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Abstract

Complex-Valued Autoencoders (CAEs) have shown fas-
cinating results in the task of unsupervised object discov-
ery. By binding learned features that have similar activa-
tions, and unbinding learned features that have dissimilar
activations using complex-valued arithmetic, CAEs manage
to cluster pixels in an image that belongs to the same ob-
ject in an unsupervised manner. However, CAEs are lim-
ited to single-channel (grayscale) images. Moreover, CAEs
only perform well on simplistic synthesized data, such as
simple 2D shapes and MNIST digits. We extend CAEs to
overcome both limitations by three novel layers to handle
complex values, namely, complex-value variants of max-
pooling, up-sampling, and channel pooling. We also intro-
duce a contrastive training scheme to further improve pixel
separability for object discovery. We empirically show that
our method outperforms existing methods in object discov-
ery on the CLEVR and Tetrominoes datasets.

1. Introduction

Object discovery in computer vision involves recogni-
tion and conceptual separation of individual objects or con-
cepts in a scene without any prior knowledge of what these
objects or concepts are. The resulting object-enteric scene
decomposition is proven to be helpful in downstream tasks
such as image classification, object detection, and seman-
tic segmentation, providing representations that generalize
into unseen environments [30,41]. Furthermore, such scene
decomposition may be compatible with human perception
as humans are shown to perform such scene decomposition
in order to reason about and interact with the environments
[25, 31, 39]. Existing research, however, requires supervi-
sion by human annotations for visual reasoning tasks such
as object detection [32] and semantic segmentation [19].

Among various approaches for object discovery, such
as [5, 30], Complex-Valued AutoEncoders (CAEs) [31] is
particularly interesting as they make use of complex values

Figure 1. Qualitative results of CoCAE on the CLEVR [21] dataset
with various numbers of objects. The top row represents the input
image, and the bottom row represents the phase output (soft mask)
of our method. Even with large numbers of objects, our method is
able to capture the majority of the objects.

as a basis for representing images and latent states. The
autoencoder output is an image, each of whose pixels is a
complex value. The magnitude of the complex value rep-
resents the intensity (i.e., a pixel value in a real-valued im-
age), whereas the phase encodes the identity of each object.
Intriguingly, this capability of object discovery is learned
through the reconstruction loss without any dedicated an-
notation.

The major limitations of CAEs are that they only
take single-channel (grayscale) and low-resolution images.
These limitations may hinder CAEs from applications to
real-world tasks; however, addressing these limitations, es-
pecially regarding the number of channels, is not trivial due
to the use of complex values. Namely, the output for an
input image with three (RGB) channels is again a three-
channel image with complex-valued pixels. The channels
of each pixel are supposed to encode object identity in their
phases individually, which are not necessarily consistent
with each other.

In an effort towards unsupervised visual reasoning,
where the need for human annotations is reduced, we pro-
pose CoCAEs, Contrastive training for Complex-Valued
AutoEncoders. We built it upon CAEs, addressing the
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aforementioned limitations to make them work on high-
resolution and multi-channel images. Our idea toward han-
dling multi-channel images is straightforward: We newly
introduce a complex channel-pooling layer to reduce phases
in multiple channels. We also introduce complex max-
pooling and up-sampling for high-resolution images to re-
duce or extend the spatial dimensionality.

We exhibit that our contrastive learning approach im-
proves the separability of the output of CAE, for multiple
objects in a single image. Where existing unsupervised
representation learning methods [6, 7, 16, 18] only learn
image-level representations, CoCAE enables representation
extraction for specific image regions. Such learned repre-
sentations could prove helpful in downstream tasks for such
as image segmentation and object detection. Additionally,
CoCAE could serve as a building block for explainable ar-
tificial intelligence (XAI) in computer vision applications.
Previously, the object discovery capabilities of Slot Atten-
tion [30] have been applied for explainable image classifi-
cation in SCOUTER [27] with minimal architecural modi-
fiations.

The contributions proposed in this work are summa-
rized as follows: (1) We introduce several complex-valued
neural network layers to allow CAE [31] to produce mean-
ingful phase values for multi-channel images. Moreover,
through these introduced layers, our method is able to per-
form object discovery on a larger resolution compared to the
original CAE architecture. (2) We introduce a contrastive
learning scheme for training CAE on high-resolution RGB
images, and demonstrate the object discovery performance
of this method through experiments with the CLEVR [21]
and the Tetrominoes [5] datasets. (3) We compare the ob-
ject discovery performance of CoCAE with state-of-the-art
object discovery techniques, and find that CoCAE outper-
forms Slot Attention [30] in terms of object discovery per-
formance on these datasets due to the high resolution output
masks of CoCAE.

2. Related Work

2.1. Object Discovery

The task of object discovery aims to identify and local-
ize individual objects that compose a scene in an image, in
an unsupervised manner. Many existing methods for ob-
ject discovery [14, 30] involve the attention mechanism [1].
Slot attention [1] for example, performs image reconstruc-
tion through a discrete attention-based bottleneck, where
the spatial information of different objects in an image is
explicitly modeled in this bottleneck. These bottlenecks are
then refined by iterating of the attention mechanism several
times. Similarly, [5] introduce MoNET and [15] propose
IODINE, which both employ a variational autoencoder [23]
in for object discovery through image reconstruction. GEN-

ESIS [13] approaches object centric representation learning
from a generative perspective, scenes are constructed in an
iterative, component-wise manner. Several extenstions on
these works have been introduced for object discovery in
video [11, 22, 24, 35].

2.2. Complex-valued Neural Networks

Interest in applying complex-valued arithmetic in neural
networks has grown over recent years. In [4] an overview
of applications of complex-valued neural networks is pro-
vided, as well as different techniques to injecting copmlex
activations into neural networks. Semantic segmentation
has seen plentiful use of complex-valued neural networks
in works such as [28]. More specifically, POLSAR imagery
is of specific interest for many [3, 42], due to the periodic
nature of POLSAR data.

2.3. Contrastive Learning

Contrastive learning is an unsupervised representation
learning paradigm which aims to learn data representation
where similar instances are grouped together in some repre-
sentation space, and dissimilar instances are distant from
each other. Recent approaches to contrastive learning in
computer vision attempt to perform this separation in the
feature space of image encoders [6, 7, 16, 18].

One of the main challenges of contrastive learning is
the mining of positive and negative pairs. Positive pairs
are used to learn which data instances to bring together,
while negative pairs are used to learn which data instances
to separate in the learned representation space. Many meth-
ods [7,18] use different views and random augmentations of
the same image to obtain positive pairs, and use a memory
bank where previous views and augmentations are stored to
obtain negative pairs. Our contrastive learning approach for
CAE follows a similar positive-negative pair mining pattern
using view augmentations and a memory bank.

More recent methods [6,9,16] overcome this pair-mining
challenge by only using positive pairs in a student-teacher
setup. In such setups a student model is optimized to mimic
the representation of a teacher model, and the teacher model
is built from previous versions of the student model based
on a momentum update rule. These methods require heavy
augmentations of the input images, to add noise to the opti-
mization objective.

2.4. Autoencoders in Self Supervised Learning

Autoencoders are optimized to reconstruct their input,
while being forced to do so through a information bottle-
neck. The purpose of the bottleneck is to reduce to dimen-
sionality of the information contianed in the image. Tradi-
tionally however, the learned representations in the bottle-
neck of autoencoders often fail to capture scene level infor-
mation, and instead focus on low level information such as
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Figure 2. Contrastive learning scheme overview. In the first step, samples are mined by creating a random crop for each image in the
training set, and randomly shifting these crops. The points of overlap between the original crop and the shifted crop is extracted and
stored. The original crop is added to a memory bank. Secondly, the original crop, the shifted crop and random samples from the memory
bank are forwarded through the CAE network. The resulting phase outputs are used in the third step, where the InfoNCE loss (equation
6) is employed to minimize the cosine distance (equation 7) between the phase outputs for the original crop and the shifted crop, while
maximizing the distance between the phase outputs for the original crop and the random samples from the memory bank.

local textures. This is a result of the optimization objective
of autoencoders, where small deviations in pixel distribu-
tion in the input reconstruction can cause large penalties.

In an effort to overcome the challenges autoencoders
face in construction meaningful latent representations,
Masked Image Modeling (MIM) [8, 17, 38, 40] focuses on
reconstructing only patches in vision transformers [10, 37].
In these approaches, a portion of the input of the vision
transformer is masked, while the vision transformer is op-
timized to reconstruct these masked patches. In some ap-
proaches an additional contrastive loss is applied to the im-
age encoding [2], to further improve the separability of the
learned representations.

3. CoCAE Method

Our approach to object discovery leverages the phase
output of Complex-valued Autoencoders [31]. We intro-
duce several architectural modifications to the complex-
valued network, and a novel contrastive learning scheme to
improve the object discovery capabilities of CAE in the fol-
lowing sections.

3.1. CAE Overview

In [31] the Complex-valued Autoencoder (CAE) is in-
troduced for learning distributed object-centric representa-
tions. CAE uses complex-valued activations instead of real-
valued activations, and leverages complex-valued arith-
metic to separate pixels in an image. Complex values con-
sist of a real part and an imaginary part, which together exist
in the complex plane. A complex value can also be seper-
ated into a magnitude, representing the norm in the com-
plex plane, and a phase, representing the angle in the com-
plex plane. In CAE, magnitudes represent the pressence
of a learned feature and the phases should represent which
learned features are bound together in a single image.

To achieve this phase encoding, [31] describe three
mechanisms: synchronization, desynchronization and gat-
ing. Synchronization and desynchronization occur natu-
rally in complex-valued neural networks due to constructive
and destructive interference in complex-valued arithmetic.
To provide the complex-valued neural network with pre-
cise control over phase-shifts, CAE separately applies the
weights of each network layer to both the imaginary and
real parts of the layer inputs:
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ψ = fw(Re(z)) + fw(Im(z)) · i ∈ Cdout (1)

(equation 2 in [31]). After obtaining intermediate value
ψ, biases are applied to the magnitudes and phases of ψ
(equation 3 in [31]). Finally, a gating mechanism is applied
in each layer in CAE that reduces the influence of out-of-
phase inputs:

χ = fw(∥z∥) + bm ∈ Rdout (2)

mz =
1

2
mψ +

1

2
χ ∈ Rdout (3)

(equation 4 in [31]), where mψ is the magnitude ofψ af-
ter applying the magnitude bias. Furthermore, [31] describe
that by applying the activation functions in each layer of the
CAE to the magnitude of the layer output only, the model
remains in full control over the phase-value outputs and thus
is able to bind learned features:

zout = ReLU(BatchNorm(mz)) ◦ exp(iφϕ) ∈ Cdout , (4)

(equation 5 in [31]) in which φϕ is the phase value of ψ
after applying the phase bias.

3.2. CAE Architectural Modifications

To extend the ideas introduced in [31], we propose three
novel complex-valued neural network layers. Complex
MaxPooling is implemented to reduce the spatial dimen-
sionality of high-resolution input images in the encoder net-
work of CAE, and performs a similar operation to plain
MaxPooling. In the case of Complex MaxPooling however,
the max-indices are computed on the magnitude input of the
module, and the pooling operation is applied to the magni-
tude and phase inputs seperately. Consequently, Complex
UpSampling is applied to increase the spatial dimensional-
ity in the decoder network. Bilinear upsampling is applied
to the magnitude and phase inputs of the module seperately.
Finally, Complex ChannelPooling reduces the channel di-
mension of a complex valued input from n to 1 by applying
a magnitude-based weighted average over the phase-values
in each of its input channels:

ϕ′
ij =

C∑
c=1

[
mijcϕijc

] C∑
c′=1

[ 1

mijc′

]
, (5)

where i, j represent the spatial domain of an image, C
is the number of input channels, and m,ϕ represent the in-
put magnitude and phase values respectively. Through this
setup, the network is forced to align phase values between
channels, but still has the magnitude-channels required for
RGB image encoding and decoding. Furthermore, the 1×1
convolutional layer, denoted as fout in [31] is removed.

3.3. Contrastive Learning for CAE

Our contrastive learning approach for training CAE uses
a view-shift approach to obtain anchors and positive sam-
ples, and a memory bank is employed to obtain negative
samples. The CAE output phase-values are optimized di-
rectly. Each image in the training dataset is randomly
cropped to obtain an anchor crop. This crop is then ran-
domly shifted, and the overlapping area between the anchor
crop and the resulting crop-shift is used as a positive sam-
ple. All random crops obtained during training are stored in
a memory bank. This memory bank is then used to obtain
random negative samples. A global overview of our training
method is provided in figure 2.

Using these anchors, positive samples and negative sam-
ples, an adaptation of the InfoNCE [36] is optmized:

LInfoNCE = −E

[
log

exp(f(p, c)/τ)∑
p′∈P exp(f(p′, c)/τ)

]
, (6)

where c ∈ [0, 2π]hw is the phase output for the anchor
image, p ∈ [0, 2π]hw is the phase output for the positive
sample, and P is the set of phase outputs for randomly sam-
pled crops from the memory bank with the addition of p.
To add significant noise to the training process, a number of
pixels is sampled for optimization according to a uniform
distribution with p < 0.005. Furthermore, τ is the tempera-
ture hyperparameter. The score function f(p, c) is defined
to be the cosine distance between p and c:

f(p, c) =
1

K

∑
k∈K

− cos(|pk − ck|), (7)

where K is the set of pixels sampled for contrastive op-
timization. This contrastive loss function exists as an auxil-
iary loss objective, besides to the reconstruction loss which
is defined as:

LMSE = ∥ŷ − x∥22. (8)

Combining both the reconstruction loss and the auxiliary
contrastive loss, we arrive at our combined loss objective for
CoCAE:

LCoCAE = LMSE + αLInfoNCE, (9)

where α is a scalar hyperparameter used to scale the in-
fluence of the contrastive loss function on the optimization
process. Finally, further noise is injected into the contrastive
optimization scheme, through random augmentations to the
positive and negative image samples. These augmentations
include Gaussian blur and color jitter.
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Dataset Model MSE ↓ ARI-FG ↑ ARI-Full ↑ Inter Cluster ↑ Intra Cluster ↓
CLEVR6 Autoencoder 4.539e-5 - - - -

CAE [31] 4.302e-5 0.00 0.03 0.04 0.98
CAERGB 4.251e-5 0.31 0.53 0.19 0.66
Slot Attention [30] 4.197e-5 0.82 0.84 - -
CoCAE (ours) 4.674e-5 0.84 0.87 0.83 0.18

CLEVR8 Autoencoder 1.143e-5 - - -
CAE [31] 1.147e-5 0.00 0.03 0.02 0.99
CAERGB 1.802e-5 0.28 0.49 0.18 0.65
Slot Attention [30] 1.348e-5 0.74 0.76 - -
CoCAE (ours) 1.203e-5 0.79 0.80 0.59 0.20

Tetrominoes Autoencoder 1.136e-5 - - - -
CAE [31] 1.457e-5 0.00 0.03 0.01 0.92
CAERGB 1.024e-5 0.42 0.62 0.29 0.52
Slot Attention [30] 1.096e-5 0.98 0.97 - -
CoCAE (ours) 1.029e-5 0.98 0.99 0.73 0.02

Table 1. Quantative results of CoCAE on different multi-object datasets. The gray rows convey results of our method. The maximum
number of objects in the CLEVR4, CLEVR6 and CLEVR8 are four, six and eight respectively. Comparisons are made between a real-
valued autoencoder forreconstruction quality, and a vanilla CAE [31] for phase-assignment comparisons. Between each method, the
difference in reconstrution quality in terms of MSE is insifnificant. CoCAE clearly outperforms CAE [31] on all metrics and datasets.
CoCAE also outperforms Slot Attention [30].

4. Experiments

Data. Our contrastive learning approach is evaluated
on the CLEVR [21] dataset and on the Tetrominoes [22]
dataset. Existing resarch on object discovery [12, 15, 30]
evaluate their methods on the same datasets. Furthermore,
these datasets provide a realistic benchmark for evaluation
of CoCAE on different numbers of objects. For this pur-
pose, five different CLEVR datasets with varying numbers
of maximum objects are generated. The smallest number
of maximum objects is four, the largest is eight. For each
dataset the minimum number of objects is two. All im-
ages in the generated datasets are resized to be 224 × 224.
Each generated training set consists of 50, 000 images and
each generated evaluation set consists of 5, 000 images. The
Tetrominoes dataset provided in the Multi-Object dataset
[22] is used consisting of 1, 000, 000 images. Each image
is resized to be 224× 224 in resolution using nearest neigh-
bour interpolation. The first 900, 000 images are used for
training, and the remaining 100, 000 images are used for
evaluation.

Metrics. To evaluate the performance of CoCAE we re-
port four quantitative results: image reconstruction quality
in terms of MSE, object centric masking quality in terms
of ARI-FG [20], and full masking quality in terms of ARI-
Full [20]. ARI (Adjusted Random Index) quantifies the sim-
ilarity between two sets of clusters - in the case of object
masks these sets are the predicted mask and ground truth
mask - while adjusting for random chance. ARI-FG only
considers ground truth masks of foreground objects, while

ARI-Full also considers the background ground truth mask.
Furthermore, we compute inter and intra cluster cosine

distances for the retrieved clusters on the phase output of
CoCAE, as an indication of the linear separability of these
clusters. This distance is rescaled to be between 0 and 1.
Both metrics are further normalized by the number of ob-
jects in an image. In the case of inter cluster distance this
adjustment is to account for the maximum achievable phase
distance between two objects in perfect separation. In the
case of intra cluster distance, the normalization account for
minimum required separation. Intuitively, these metric thus
describes to which extent perfect separation is achieved in
a value between 0 and 1. For inter cluster distance, cluster
means are used, while for intra cluster distance, the mini-
mum and maximum phase values within a cluster are used.

Models. The autoencoder model architectures used in
our experiments follows the VGG-16 [34] architecture, sim-
ilar to how the architecture is used in U-Net [33] segmen-
tation models. We add a ComplexChannelPooling layer
after the last convolutional layer in the encoder and de-
coder. Furthermore, we compare our training method with
a real-valued autoencoder following the same architecture
for image reconstruction quality. We also compare our
training method with a vanilla CAE [31] for comparison
of clustering performance. The ComplexMaxPooling lay-
ers are replaced by convolutional layers with stride 2, and
the ComplexUpSampling layers are replaced by deconvolu-
tional layers, such that comparisons on the same 224× 224
image resolution can be made. For further comparison to
object discovery methods, we compare our method with
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Image Phases Mask Polar Image Phases Mask Polar

Figure 3. Qualitative results of CoCAE on the CLEVR (left) [21] and Tetrominoes (right) [5] datasets. CoCAE manages to capture object
instances in the phase output, after which clustering becomes trivial. Even similarly colored objects with that border in pixel space (two
red objects in top left result for example) receive significantly distant phase assignments.

Slot Attention [30]. We adapt the Slot Attention model for
image reconstruction on a 224 × 224 resolution by adding
one convolutional layer to the encoder CNN and one decon-
volutional layer to the decoder CNN described in the orig-
inal paper. As a result, the object attention masks become
7 × 7 each. The number of slots used is equal to the maxi-
mum number of objects in each dataset minus one. Further
exact details of all model parameters are shared in the sup-
plementary material.

Phases to Masks. Following the phase clustering
method described in [31], the output phases of CoCAE are
projected onto a unit circle in euclidean space. After this
projection, K-means is applied, where the number of clus-
ters is equal to the number of objects in the ground truth
labels plus one. For the vanilla CAE, this clustering step
is applied on all three image channels. Note that this step
is solely in place for evaluation purposes, and could be re-
placed with clustering methods that do not require a fixed
number of target clusters in any downstream application, as
also stated in [31].

Training Settings. Training CoCAE is split in two
stages. First the network is trained for 100 epochs on im-

Config. MSE ARI-Full Inter Cluster ↑
Dec. Only 6.008e-5 0.79 0.68
Enc. & Dec. 6.186e-5 0.87 0.83
Every Block 1.913e-1 0.01 0.08

Table 2. Performance of CoCAE with different placements of the
ComplexChannelPooling layer on the CLEVR6 dataset. The gray
row indicates configuration used in main experiments.

age reconstruction only. During this stage a batch size of 64
and a learning rate of 0.0001 is used. The network is then
trained to optimize according to our contrastive objective
using a batch size of 16, a learning rate of 0.0001, a sin-
gle positive sample and 100 negative samples. For scaling
the InfoNCE [36] part of our loss function, α = 0.00001.
Results of the optimized model after reconstruction opti-
mization, but before contrastive optimization provided in
our main results and are marked as CAERGB.

5. Results
Table 1 provides an overview of CoCAE performance

in comparison to a real-valued autoencoder, a vanilla CAE
[31], CAERGB and Slot Attention [30] on two CLEVR [21]
datasets containing different numbers of objects, and the
Tetrominoes dataset. The reconstruction quality between all
models varies insignificantly. The masking performance of
CAERGB, CoCAE and Slot Attention are significantly bet-
ter compared to the vanilla CAE however. Vanilla CAE
fails to produce meaningful phase outputs compared alto-
gether, as it is not able to handle RGB images. CAERGB
produces more significant separations, but only manages to
capture foreground-background separation. CoCAE con-
sistently outperforms Slot Attention [30] in terms of ARI-
FG and ARI-Full. This is largely attributed to the manner
in which CoCAE handles masking resolution compared to
Slot Attention [30]. The phase output of CoCAE is the same
resolution as the input image, while the attention mask out-
put of Slot Attention [30] is remarkably smaller than the
input image. To still achieve masks of the same input res-
olution, upsampling is required. During this upsampling
process, details are lost. Object boundaries for example are
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obscured in the spatial domain of the image. This effect is
less noticeable on smaller evaluation resolutions.

In table 2, the impact of the ComplexChannelPooling
layer on the performance of CoCAE is exhibited. Apply-
ing channel pooling only to the decoder - which is the min-
imum required for RGB images - reduces the separability
of the phase output of CAE. By applying channel pooling
after each convolutional block in the model, image recon-
struction fails. Optimally, channel pooling is applied after
the last convolutional blocks of the encoder and the decoder.

Figure 3 provides insight into the decay of the perfor-
mance our method as the maximum number of objects in
the CLEVR [21] dataset increases. Beyond 7 objects, the
performance rapidly decreases, as the maximum achievable
angle distance between phase clusters decreases. At 7 ob-
jects (plus background), the maximum achievable angle dis-
tance between object clusters equal to 2π

8 = 1
4π. Compared

to vanilla CAE [31] however, CoCAE provides a very sig-
nificant increase in the number of objects it is able to cap-
ture. Results of vanilla CAE [31] show that performance
starts to reduce crucially beyond three objects, whereas Co-
CAE performance remains above 0.8 ARI-Full up to seven
objects.

Qualtitative results of CoCAE in figures 1, 3 and 6
demonstrate how CoCAE captures objects in the phase out-
put. The polar projections provide insight into how well
phase clusters can be separated. For most images, CoCAE
is able to maximize the distance between phase clusters, as
also expressed in the distance metrics in table 1. Figure 6,
shows the performance of CoCAE on larger numbers of ob-
jects. Even though CoCAE is not able to capture all objects,

Figure 4. Zero-shot domain transfer of CoCAE onto the
CelebAHQ-Mask [26] dataset. The model was trained only on
the CLEVR10 [21] dataset, but is able to separate regions of
hair, eyebrows and mouths in completely unseen images from the
CelebAHQ-Mask [26] dataset.

Figure 5. Decay of CoCAE performance on the CLEVR [21] in
terms of ARI-Full as the maximum number of objects increases.
The decay of ARI-Full is a result of less defined cluster bound-
aries, expressed in terms of the distance between phase clusters.

it manages to capture the majority of objects, and separate
them as the phase distance between clusters is maximized.

5.1. Domain Transfer

To gain insight into applications of CoCAE in natural
images, we provide qualitative results of CoCAE on the
CelebAHQ-Mask [26] dataset in figure 4. These results are
obtained with a CoCAE model that was only trained on the
CLEVR10 dataset. As the model is optimized for image
reconstruction, there is room for zero-shot domain trans-
fers. The model aims to reconstruct the input image, while
matching shapes it has encountered in the training process.
The results in figure 4 show that CoCAE is able to perform
this domain transfer, and match several key regions in the
faces depicted, such as hair, mouth and eyebrows. How-
ever, as the phase output of CoCAE on these images is very
centered around 0π, clustering into meaningful masks, and
thus qualitative evaluation is not possible on this dataset.

5.2. Limitations and Improvements

As the primary optimization objective of CoCAE re-
mains image reconstruction through MSE Loss, the model
looses representation capacity to unnecessary information
such as precise light reflections in the CLEVR dataset
[21] and shadows/highlights in the Tetrominoes dataset [5].
To avoid focus on such low-level details in natural im-
ages, [29] propose a frequency filtering technique for image
reconstruction-based representation learning. These filters
reduce the occurance of low-frequency image features, thus
improving the focus on scene-level scene features. Such
filtering could be applied to our approach to improve the
object discovery quality of CoCAE.

The number of objects that CoCAE is able to capture
is also limited. Performance of CoCAE significantly drops
with an increased number of objects. As shown in figure
4, some objects are lost in the phase output of CoCAE, and
some objects receive non-uniform phase assignments. This
limitation is largely due to the shrinking of the available
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Figure 6. Qualitative results of CoCAE on the CLEVR10 [21]
datasets with large number of objects. Altough CoCAE manages
to capture many objects correctly, some objects are lost in the
phase output of CoCAE, while others receive more than one phase
assigment across the pixels than span the object.

space between pixel clusters in the phase output of CoCAE.

Finally, as illustrated by the results in figure 4, cluster-
ing phase outputs into mask is not feasible for CoCAE out-
puts on natural images such as the CelebAHQ-Mask dataset
[26]. This currently limits the practical applicability of
CoCAE. Further research into applications of contrastively
trained complex-valued autoencoders in downstream tasks
such as explainable computer vision, semantic segmenta-
tion and object detection is encouraged.

6. Conclusion

In this work we presented CoCAE, a contrastive learning
approach for complex-valued autoencoders for object dis-
covery. To achieve more scalability in terms of image chan-
nels and image resolution, we introduced several complex-
valued neural network layers. We proposed a contrastive
training scheme for the optimization of the phase output of
the network, which uses augmentations for positive-sample
mining, a memory bank for negative-sample mining. An
adaptation of the InfoNCE [36] loss is derived for optimiza-
tion of CAE using these positive and negative samples. We
empirically show that CoCAE outperforms existing object
discovery methods on the CLEVR [21] and Tetrominoes [5]
datasets. Finally, we discuss the limitations of CoCAE and
recommendations on how to further improve the object dis-
covery performance of CoCAE, which currently include the
number of objects that CoCAE is able to process, the recon-
struction loss objective for CoCAE, and the lack of applica-
tion of CoCAE onto downstream tasks.
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