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Abstract

This thesis addresses the challenges of large-scale comic analysis by introducing an unsu-
pervised sequential representation learning method tailored specifically for this medium. As
a rich source of cultural narratives and visual storytelling, comics present significant com-
plexity due to their intricate artwork and subtle narrative cues. Traditional analysis methods
struggle to capture these nuanced visual patterns at scale. The proposed approach leverages
the sequential nature of comic panels to learn contextual representations, enabling a deeper
understanding of the visual language inherent in comics. Our contributions include the de-
velopment of ASTERX (A Self-supervised Transformer Encoder for comic panel Representa-
tion eXtraction) and ELRIC (contExt normaLisation for Representation learning In Comics).
ASTERX captures the continuity and contextual relationships within sequences of comic
panels, while ELRIC integrates these contextual representations into existing self-supervised
frameworks, enhancing their performance in various downstream tasks. Extensive experi-
ments demonstrate the effectiveness of these methods in tasks such as panel retrieval and
character emotion classification, highlighting their potential for machine learning-aided cul-
tural analysis. By providing tools for the relative quantification and comparative analy-
sis of comics, this thesis lays a foundation for systematically exploring visual storytelling
across different cultures and artistic styles. Our findings offer insights into the construction
of comics and their narrative structures, contributing to the field of comic studies and the
broader domain of cultural analysis.



Chapter 1. Introduction

Comics offer insight into cultural narratives, visual storytelling, and the complexities of vi-
sual language and human expressiveness [58, 6, 62, 49]. They serve not only as a form of
entertainment but also as a reflective mirror of societal constructs and cultural identities.
Analysing these constructs at scale requires robust representations that can capture the nu-
anced visual patterns within comics. Machine learning-aided analysis of comics at scale
has already proven an effective method in many aspects of learning specific tasks such as
text extraction and character recognition [61, 3, 42]. However, these methods rely heav-
ily on extensive annotations to perform supervised tasks. In an effort to reduce the need for
such extensive annotations, while still enabling machine learning-aided analysis of comics at
scale, this thesis investigates the possibilities of unsupervised representation learning within
comics. To this end, we introduce two novel methods of unsupervised representation learn-
ing, specifically tailored for comics. Our first proposed method, ASTERX, leverages the
sequential nature of comic panels to encode contextual information transmitted within the
panel sequence. Our second method, ELRIC, builds upon the contextual representations
learned by ASTERX, to learn representations for specific regions (such as character bound-
ing boxes) within comic panels. For both of these methods, we perform extensive evaluation
to understand their respective performance.

Analysing comics on a large scale presents significant challenges due to the nuanced
and multifaceted nature of visual patterns within this medium [12, 13, 4]. Comic panels
encompass a wide array of stylistic and semantic elements, ranging from intricate artwork
to subtle narrative cues. Consequently, systematically decoding and interpreting these el-
ements introduces numerous challenges [12, 13] such as subjectivity of stylistic elements.
Our method not only aims to enhance the understanding of the visual language inherent
to comics but also lays the groundwork for machine learning-aided cultural analysis of this
medium. The task of dissecting comics into consistent stylistic and semantic components is
inherently complex due to the integration of art and narrative in diverse and sophisticated
ways [12, 13]. Additionally, the portrayal of emotions, settings, and character interactions
through these styles adds another layer of complexity, making consistent quantification and
annotation a formidable task.

Our approach emphasises relative quantification, developing tools for comparative anal-
ysis, such as evaluating how one comic compares to another, rather than relying on abso-
lute measures and tasks as already explored in existing research [6, 3]. This methodology
acknowledges the subjective nature of artistic mediums and aims to contextualise comics
within a broader spectrum of styles and narratives, providing a comprehensive framework
for their analysis.
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1.1 Contributions

Our main contributions are the introduction of ASTERX and ELRIC as novel representation
learning methods tailored for visual narratives. Furthermore, we explore many aspects of
the capabilities of ASTERX and ELRIC through extensive evaluation, ablation studies and
qualitative analyses. Finally, we also apply learned representations in a cultural analysis. As
such, we summarise the contributions in this thesis as listed below.

1. A novel framework is introduced for learning representations of comic panels using
unsupervised sequential representation learning. This framework captures the nu-
anced visual patterns within comics, enabling a deeper understanding of their multi-
faceted nature.

2. We propose a method to integrate learned representations into the training processes
of existing self-supervised methods. This technique enhances the performance of these
methods in various downstream tasks by reducing the contextuality of the representa-
tions.

3. Extensive experiments demonstrate an increased performance over existing self-super-
vised methods in comic representation learning. Our evaluation includes tasks such
as panel retrieval and character emotion classification.

4. By systematically analysing the learned representations, we uncover underlying pat-
terns in how comics are constructed and their narrative structures. This analysis ex-
tends beyond identifying basic stylistic elements, offering insights into the differences
in visual storytelling across cultures. Many of these insights are in line with leading
theories in linguistics and inference theory.
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Chapter 2. Related Work

This chapter surveys existing methods of quantitative cultural analysis of comics. Then, we
explore the applications of machine learning in the context of comics. Finally, we review
existing self-supervised representation learning methods.

2.1 Quantitative Approaches in Analysis of Comics

Quantitative approaches to the analysis of comics have greatly enhanced our understanding
of visual storytelling across different cultures. Initial studies [12, 20] introduced categorisa-
tion methods for scene framing techniques within comic panels, revealing distinct framing
practices among comics from various cultural backgrounds. Building on this, [18] extended
the analysis to the layout of panel sequences on pages, providing a systematic framework
for evaluating page layouts. This study compared comics from six different cultural origins,
uncovering significant differences in layout practices and emphasising the cultural speci-
ficity of comics.

Furthering this line of inquiry, [4] introduced a framework for analysing the continuity
of panel sequences, focusing on dimensions of time, space, and character continuity. This
approach enabled detailed comparisons of narrative structures across comics from differ-
ent cultural origins, highlighting variations in continuity practices.[35] introduced a novel
method for discretising continuity in panel sequences, quantifying changes in time, space,
and character dimensions across panels. By systematically categorising these changes, the
study conducted a comparative analysis of transitions in comics from three continents, re-
vealing significant cultural differences. Furthermore, quantitative image analysis techniques
have been applied to comics to extract and analyse visual patterns. For instance, [54] utilised
digital image analysis to study the brightness and visual details in Tintin comics, highlight-
ing how these visual properties can be quantified and compared across different works.

The exploration of cross-cultural differences in visual narratives has provided valuable
insights into how cultural contexts influence the depiction of scenes and the use of back-
grounds in comics. [2] found that East Asian comics tend to convey contextual information
more implicitly compared to Western comics, which aligns with cognitive patterns of atten-
tion and distinct graphic styles.

These studies demonstrate the value of quantitative methods in the cultural analysis of
comics. They highlight the utility of such approaches and suggest the potential of computa-
tional techniques to scale up the analysis. Automation of these methods could facilitate the
examination of larger datasets, offering deeper insights into the cultural variances in comic
storytelling.
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2.2 Applications of Machine Learning in Comics

Computational approaches to comic processing revolve around supervised machine learn-
ing techniques. Both [61] and [3] offer extensive overviews of the state-of-the-art applica-
tions of machine learning in computational analysis of comics. Their work encompasses a
range of approaches from basic pattern recognition in comic art to complex narrative struc-
ture analysis. A substantial portion of existing work in computational comic analysis can
be attributed to advancements in computer vision techniques, particularly in the automated
extraction of key comic elements such as panels, speech bubbles, and characters.

Panel Extraction is crucial for quantitative analysis of comics and has been addressed by
[33, 53, 32] among others. Their methods leverage various computer vision techniques to
identify and segment comic book panels, thereby facilitating the analysis of narrative se-
quences within comics. These approaches all leverage annotated comic panels to train object
detection models for panel extraction.

Text Block Extraction is an essential first step for text analysis within comics. Methods
introduced in [57] and [24] attempt to segment text blocks in comics through supervised
segmentation. Their supervised methods rely on rich and extensive annotations.

Character Detection in comics poses unique challenges due to the varied artistic styles and
the dynamic nature of character appearances. Methods for character detection have been
introduced in [64] [50] [26]. Furthermore, an extensive analysis of the robustness of various
character detection methods across different styles of comics is introduced in [46]. Finally,
[66] introduced a method for cross-style unsupervised character detection, aiming to over-
come domain shifts in comics, a common issue when dealing with diverse artistic styles.

Emotion Detection of characters within comics through machine learning has been ex-
plored in a competition described in [51], in which various approaches to supervised char-
acter emotion detection are proposed. An automated framework for detecting emotions in
comics through graphical cues is introduced in [59], which takes into account various as-
pects of human expression including facial expressions, body language, background effects,
and onomatopoeia. This holistic approach marks a significant stride towards understanding
the emotional depth and narrative techniques employed in comics.

In summary, the exploration of computationally-aided analysis of comics has predominantly
focused on supervised machine learning methods, as detailed by [61, 3, 42]. While these de-
velopments mark significant achievements in the field, the reliance on supervised learning
highlights a dependency on extensive, annotated datasets. This requirement often limits the
scalability of analysis and the adaptability to the vast stylistic diversity inherent in comics.
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2.3 Self Supervised Representation Learning

The landscape of self-supervised representation learning offers a rich array of methods that
extract meaningful representations from data without the need for labeled datasets. In this
section, several key strategies that have significantly advanced the field are explained.

Contrastive learning techniques have become fundamental in self-supervised representa-
tion learning, playing a pivotal role in the development of robust and invariant feature rep-
resentations. One of the pioneering methods in this domain is Momentum Contrast (MoCo)
[30]. MoCo innovates by employing a dynamic queue and a momentum-updated encoder.
This approach addresses the challenge of maintaining a large and consistent set of negative
samples, which is crucial for effective contrastive learning. The dynamic queue allows for
a diverse and extensive set of negative examples, while the momentum encoder ensures
stability and consistency in the representation space over different training iterations. By
contrasting positive pairs—differently augmented views of the same image—against a large
pool of negative pairs, MoCo effectively learns invariant features that are robust to data
augmentations. Building on the foundation laid by MoCo, MoCov2 [9], further refines this
paradigm. MoCov2 enhances the original framework by incorporating advanced data aug-
mentation techniques and improving the representation projection head. These enhance-
ments lead to better feature representations and improved performance on downstream
tasks. The core idea remains the same: leverage a large, diverse set of negative samples
to learn robust feature representations through contrastive loss. However, MoCov2’s im-
provements in augmentation strategies and the representation head significantly boost the
model’s performance, demonstrating the importance of fine-tuning the details in contrastive
learning frameworks.

Self-distillation methods such as Bootstrap Your Own Latent (BYOL) [28] introduce an
approach to self-supervised representation learning in which the use of negative samples
is completely avoided altogether. Instead, BYOL employs a student-teacher setup where
the student model learns to predict the output of the teacher model. This is achieved by
using differently augmented views of the same image, ensuring that both the student and
teacher networks receive diverse yet related inputs. The teacher model’s parameters are
updated with an exponential moving average of the student parameters, fostering a sta-
ble learning process. This setup allows BYOL to learn effective representations by focusing
solely on positive pairs, where both views of the same image are encouraged to produce
similar representations, thereby avoiding the need for explicit negative samples. This inno-
vative strategy addresses the complexities and computational burdens associated with neg-
ative sample mining, proving highly effective in learning robust features. Similarly, DINO
(Self-Distillation with No Labels) [8] and its successor DINOv2 [52] leverage the same self-
distillation technique to enhance representation learning, specifically utilizing Vision Trans-
formers (ViT) [69]. DINO operates by passing different augmentations of the same image
through a student and a teacher network, aiming to align their output feature distributions.
This alignment is achieved through self-distillation, where the student network is trained
to match the teacher’s outputs. To ensure the representations do not collapse to trivial so-
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lutions, DINO employs techniques such as sharpening and centering. Sharpening adjusts
the output distribution to be more confident, while centering normalises the feature dis-
tributions to maintain diversity in the learned representations. DINOv2 builds on these
principles by refining the approach and further improving the robustness and quality of the
learned features.

Reconstruction-Based methods such as Masked Autoencoders (MAE) [30] represent a sig-
nificant advancement in self-supervised learning by focusing on the reconstruction of masked
parts of an image to learn robust representations. This technique draws inspiration from
masked language modelling [22] in natural language processing, where parts of the input
are hidden during training and the model learns to predict these masked segments. In the
context of images, MAE addresses the challenge of pixel-wise image reconstruction such as
seen in traditional AutoEncoders, which often fail to capture meaningful high-level repre-
sentations due to the variability and complexity of individual pixel values in images. Instead
of reconstructing individual pixels, MAE reconstructs larger image patches. This approach
helps the model to focus on higher-level structures and semantics within the image, rather
than getting stuck on fine-grained pixel details that may not contribute significantly to the
overall understanding of the image content. By masking substantial portions of the image
and then learning to reconstruct these patches, MAE forces the model to infer the global
context and spatial relationships, leading to more meaningful and coherent feature repre-
sentations.

2.4 Residual Learning

Finally, our work is inspired by related research in residual learning. Residual learning is in-
troduced in [31]. Their work enables training of deep neural networks through the introduc-
tion of residual networks (ResNet). Residual layers are able to reference their input, which
allows for optimisation of such deep networks without information loss. In [43], Residual
Continual Learning (ResCL) is introduced. In many sequential learning setups, networks
suffer from catastrophic forgetting, where networks are unable to transfer knowledge in do-
main shifts [67]. (ResCL) addresses these issues by combining layers from networks before
and after (i.e. fine-tuned) a domain shift takes place. Our work takes inspiration from both
works in a residual sequential learning task.
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Chapter 3. Learning from Sequences

In this chapter, we introduce A Self-supervised Transformer Encoder for comic panel Rep-
resentation eXtraction (ASTERX, named after the comic character Asterix). ASTERX lever-
ages the sequential nature of comic panels to learn general and contextual representations
of comic panels. Inspired by the principles of optimisation found in masked language mod-
elling [22], our approach leverages narrative continuity embedded within adjacent comic
panels. This enables facilitation of the transmission of contextual information - from scene
composition to character expression. As discussed in [18] [4] [35], the continuity of such as-
pects in sequences of panels in comics is of great significance to cultural analysis in comics.
Our proposed method of representation learning also serves as a starting point for down-
stream. First, we will provide an in-depth description of ASTERX and our proposed optimi-
sation scheme, then we will describe our experimental setup including a description of used
datasets and evaluation methods. Finally, we will discuss the performance of ASTERX in
comparison to existing representation learning methods that do not leverage the sequential
nature of comics.

3.1 ASTERX

ASTERX models sequences of comic panels with a transformer [69] encoder (Figure 3.1). To
enable analysis at both panel-level and sequence-level a special [CLS] token is prepended
to each sequence, with one input token per individual panel. The [CLS] token captures the
sequence-level information, while panel-level representations are encoded by the matching
output tokens for each input panel. To optimise these representations we train ASTERX
with two tasks inspired by masked language modelling.

3.1.1 Pretext Tasks

During training, the encoder is optimised through two tasks: panel retrieval and order clas-
sification. To facilitate these tasks the encoder receives two panel sequences of the same
length as input, separated by a [SEP] token. For the panel retrieval task, a single input token
(panel) is masked using the special [MASK] token in the first panel sequence, and the en-
coder is optimised to produce a representation that matches the masked panel. The second
input sequence is used in an order classification task. The order of the two input sequences
is shuffled at random to facilitate learning of longer panel distance relations. A linear classi-
fication layer takes the output embedding at the position of the [CLS] token and is optimised
to classify whether the sequences are in the correct order.

Our approach follows the ideas behind masked language modelling introduced for BERT

7



Figure 3.1: Overview of ASTERX. Individual panels are encoded with a backbone, after
which the sequence of panels is encoded by our sequence encoder. This sequence encoder
is optimised for both panel retrieval and panel order classification.

[22]. However, a key difference between natural language and visual language is the open-
set nature of visual language. Where natural language can be modelled through a discrete
set of words or tokens (i.e., the vocabulary), visual language is continuous and thus cannot
be directly modelled in the same closed-set fashion as masked language modelling. Even
though for example framing of characters in comics [12, 33] often follow patterns across
comics that can be discretised, the underlying data format (i.e. images) makes pixel-wise
reconstruction - in comparison to token-wise reconstruction in masked language modelling
- an infeasible task as discussed in [29, 70].

We address the challenges that come from the open-set nature of visual language by
casting it as a retrieval task. For the panel retrieval task, we construct a collection of “candi-
date” panels. These panels are selected from the training set based on a predefined sampling
method (section 3.1.2). With these candidates, the sequence encoder is not only optimised
to minimise the distance between the output embedding at the [MASK] position and the
masked input token; it is also honed to maximise the distance from all incorrect candidate
panel embeddings. This configuration allows us to optimise the sequence encoder by learn-
ing to select the correct panel. The probability assigned by the sequence encoder for an
individual candidate is formulated as:

ŷi =
exp f(x, ci)∑
c∈C exp f(x, c)

. (3.1)

Here, f(x, c) denotes a distance metric used to gauge the similarity between two embed-
dings. x represents the output embedding at the [CLS] token position, and C encompasses
the set of candidate tokens including the authentic masked token. When expanded in the
batch dimension, each x is paired with a unique C constructed according to the candidate
sampling strategy. Employing this formulation, the sequence encoder is optimised using the
cross-entropy loss, where the ground truth label aligns with the index of the masked input
token within the candidate set.
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Figure 3.2: Sequence of panels from Tintin: The Secret of the Unicorn (first row) along with two
candidate samples from the same comic and two from Suske en Wiske and Fullmetal Alchemist
respectively (second row). The correct candidate is highlighted in green, and the incorrect
in red.

3.1.2 Candidate Sampling

The candidate sampling strategy intricately shapes the embedding space of the panel se-
quence encoder. Consequently, we propose four sampling strategies: 1) Random sampling:
Candidates are randomly selected from the training dataset without any specific criteria.
2) Pixel-intensity based sampling: Candidate panels are chosen within a range of similar
pixel-value intensities as the masked panel, based on histogram bins. 3) Panel shape-based
sampling: Candidates are selected within a range of comparable panel shapes, defined by
the height-to-width ratio, akin to the masked panel. 4) Same comic sampling: Candidates
are exclusively sourced from within the same comic as the input sequence. Crucially, all
properties used in these sampling strategies do not require any annotation. For each strat-
egy, two variants exist: a pure sampling strategy and a mixed strategy. For the pure variants,
panels are only sampled according to the criteria described, while in the mixed variant half
of the panels are sampled according to the criteria and the other half are sampled completely
randomly. In each of these strategies, the true target panel is always included in the set of
candidate panels.

3.2 Experiments

Our experiments involve a comparison of our method with various methods on two eval-
uation tasks: training a linear classifier using learned representations for a specific classifi-
cation task and panel retrieval. We compare our method to the following existing works:
1) supervised ResNet-50 [31] trained to perform only style classification, 2) OpenCLIP [10]
trained on the DataComp-1B [27] dataset, 3) DINO [8] and DINOv2 [52] trained on Ima-
geNet [21] and 4) DINO trained on the COMICS [36] dataset first, and then on the TINTIN
corpus [7]. The OpenCLIP, DINO and DINOv2 methods are also evaluated in a “Pooled”
variant, where the features of neighbouring panels surrounding the target panel are mean-
pooled to obtain a contextualised representation.
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Figure 3.3: Distribution of style, genre and format attributes of comics in the TINTIN [7]
corpus.

3.2.1 Data

For our experiments, we use two datasets, the COMICS dataset [36] and the TINTIN corpus
[7]. The COMICS dataset consists of 1.2 million panel images and features American comics
from the golden age (i.e., 1940s and 1950s). We use the COMICS dataset as a pre-training
starting point due to the large quantity of available data within the domain of comics, de-
spite its larger uniformity in comic style.

The TINTIN corpus features more diversity, with over 1,000 comics from over 144 coun-
tries/territories, and spanning more than 77,000 panels. The TINTIN corpus is also accom-
panied by various types of comic-level annotations such as style, format and genre. For the
style attribute, the majority class covers 24.5% of a total of 13 classes with classes such as
“Manga” “Superhero” and “Cartoon”. The format attribute contains classes such as “Comic
book”, “Webcomic”, and “Graphic Novel” with a total of 8 classes and the majority class
covering 31.2%. Lastly, the genre attribute contains a total of 91 classes such as “Supernat-
ural”, “Action”, and “Political commentary”, with the majority class spanning 17.4%. All
quantitative evaluation of our approach is performed on the TINTIN corpus, as it encapsu-
lates more varied data and provides annotations as ground truth information. The TINTIN
corpus is split into an 80% training split, a 10% validation split and a 10% test split for eval-
uation.

3.2.2 Experimental Setup

We use DINO-trained [8] ViT [23] features for the individual panel representations that serve
as input tokens for the sequence encoder. To explore the influence of the backbone we ex-
periment with variations of training the ViT feature extractor on different datasets, and with
different ViT settings. For the main experiments the backbone - pre-trained on ImageNet -
is first fine-tuned on the COMICS dataset, then fine-tuned on the TINTIN corpus. All mod-
els are optimised using the AdamW optimiser [44], with batch size 256 and learning rate
0.0001 for 50 epochs. Unless specified otherwise, we sample 64 candidate panels during
training. The architecture of the panel sequence encoder consists of four attention heads
and four transformer encoder layers. Each layer has a dropout probability of 0.4. The input
embedding size is 384, and the output embedding size is 768. Each training and evaluation
sequence consists of 5 panels, of which the center panel is masked.
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3.2.3 Linear Fine-tuning

We follow a common approach for the quantitative evaluation of self-supervised training
methods. This approach involves training a linear classifier on the feature space derived
from the self-supervised model for a specific classification task. In our configuration, we
leverage diverse comic-level annotations extracted from the TINTIN corpus. Specifically,
we employ style, format, and genre annotations to train a linear classifier. Subsequently,
this classifier’s performance is evaluated based on classification accuracy, which provides
insight into how well the feature space captures specific information. For this analysis we
compare models in three different settings: (1) Fully Supervised, here the ResNet-50 models
are pre-trained for style and then fine-tuned on Format and Genre. (2) Linear Fine-tuned,
which utilises pre-trained backbone on image datasets, and a linear classifier that is fine-
tuned for each classification task. OpenCLIP is pre-trained on DataComp-1B, and DINO
and DINOv2 are pre-trained on ImageNet. In (3) the Fully Fine-tuned section all methods
are first pre-trained on the COMICS dataset, and then fine-tuned on the TINTIN corpus.

Table 3.1 shows the classification performance of a linear classifier trained to classify
three aspects of a comic in the TINTIN corpus using the features of various methods. The
ResNet-50 trained to classify style outperforms all other methods for style classification, yet
generalises poorly to format and genre. Our method outperforms all unsupervised methods,
as well as the ResNet-50 on format and genre classification, indicating that supervised pre-
training does not result in a model that generalises well.

Method ViT Style Format Genre

Fully Supervised
ResNet-50 [31] - 85.6 53.2 47.7
ResNet-50 Pooled - 87.3 56.1 49.8

Linear Fine-tuned
OpenCLIP [10] B/16 35.6 38.1 25.4
DINO [8] S/16 34.8 37.7 23.5
DINOv2 [52] S/14 33.4 36.6 21.7
OpenCLIP Pooled B/16 36.2 38.4 26.0
DINO Pooled S/16 35.4 38.2 23.9
DINOv2 Pooled S/14 34.0 36.7 22.3

Fully Fine-tuned
DINO B/16 54.8 51.4 42.6
DINO Pooled B/16 56.2 54.8 43.6
ASTERX (ours) B/16 65.6 63.2 51.2

Table 3.1: Linear classification results on various attributes of the TINTIN corpus [7]. The
ResNet-50 [31] model is trained for style classification, and the models in the Not Fine-tuned
section are trained on DataComp-1B [27] and ImageNet [21]. The methods in the Fully Fine-
tuned section are first fine-tuned on the COMICS dataset [36] and then Fine-tuned on the
TINTIN corpus.
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3.2.4 Panel Retrieval

To further evaluate our method, we pose a retrieval task that aims to retrieve a missing panel
within a sequence. To determine how well the model handles large diversity in style and
content we use the entire test set, consisting of approximately 7.700 panel images, as the
pool of candidate panels. We compute Recall@K across different values of k to gauge the
retrieval performance, and thus the ability of the model to encode contextual information
within panel sequences.

The panel retrieval performance of the compared methods is shown in Table 3.2. Across
the board, we see that this is a highly challenging task. The ResNet-50 model that has been
trained in a supervised manner for style classification performs poorly in this retrieval set-
ting, failing to generalise to retrieval. Similarly, the pre-trained OpenCLIP and DINO back-
bones do not perform well, with OpenCLIP outperforming DINO and DINOv2, which may
presumably be due to the presence of comic(-like) images in the larger pre-training set. Fine-
tuning DINO on comic data boosts the performance somewhat, but presumably more data is
required to obtain good performance. Comparatively, our method performs notably better,
thereby showcasing an increased contextual understanding of panels.

Comparing the retrieval performance in Table 3.2 to the classification performance in
Table 3.1, there is an obvious gap in the performance of the ResNet-50 where the strong
classification performance does not translate to retrieval performance. This gap showcases
the reality of the generalisability of features learned with supervision, as good classifica-
tion performance does not guarantee good retrieval performance. Comparing the retrieval
performance with the classification performance for the unsupervised methods, we observe
much more balance in performance between these varied tasks, indicating that more general
representations are learned.

Method ViT R@1 R@5 R@10

Fully Supervised
ResNet-50 [31] Pooled - 0.1 0.1 0.2

Not Fine-tuned
OpenCLIP Pooled [10] B/16 0.5 4.5 15.6
DINO [8] Pooled S/16 0.1 0.5 8.1
DINOv2 [52] Pooled S/14 0.1 0.4 7.6

Fully Fine-tuned
DINO Pooled B/16 1.5 19.7 37.1
ASTERX (ours) B/16 15.7 72.3 89.6

Table 3.2: Panel retrieval performance on the TINTIN corpus [7]. The ResNet-50 [31] model
is trained for style classification, the models in the Not Fine-tuned section are trained on
DataComp-1B [27] and ImageNet [21]. The methods in the Fully Fine-tuned section are first
fine-tuned on the COMICS dataset [36] and then Fine-tuned on the TINTIN corpus.
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Linear Classifier ↑ Retrieval ↑
Method Style Format Genre R@1 R@5 R@10

Random 56.8 55.0 43.7 2.3 45.5 60.0
Pure Sampling
Intensity 57.9 56.8 45.4 4.1 52.7 67.9
Ratio 57.8 57.0 45.7 3.6 51.2 67.5
Comic 60.9 59.5 47.0 4.5 51.6 68.7

Mixed Sampling
Intensity + Random 59.0 58.2 45.9 11.3 67.2 82.6
Ratio + Random 59.3 58.6 46.4 11.5 67.1 82.9
Comic + Random 63.8 62.5 47.6 12.3 68.8 84.2

Table 3.3: Classification and retrieval performance of different candidate sampling strate-
gies. All mixed sampling strategies outperform pure sampling strategies, and the mixed
comic sampling strategy performs best overall.

3.3 Analyses

To understand the performance of ASTERX beyond the comparisons made in the previous
sections, this section showcases the results of a comprehensive ablation study of the individ-
ual components of ASTERX. We also showcase various success and failure cases of ASTERX
in the retrieval task. Finally, we use T-SNE [68] to project the learned representations of
ASTERX and analyse the results.

3.3.1 Ablations

We perform three ablations to increase understanding of our method. First, Table 3.3 demon-
strates both the linear classifier performance and the retrieval performance of our method
trained using various candidate sampling strategies. All mixed sampling strategies outper-
form the pure sampling counterpart, indicating that a diverse mix of sampling candidates
is beneficial in all evaluation aspects. Furthermore, in both mixed and pure sampling cate-
gories sampling candidates from the same comic outperforms the other sampling strategies.

Backbone ASTERX R@1 R@5 R@10

COMICS [36] COMICS 0.3 13.8 32.4
COMICS TINTIN [7] 0.6 29.3 54.7
COMICS → TINTIN TINTIN 12.3 68.8 84.2
TINTIN TINTIN 10.8 65.3 79.7

Table 3.4: Comparison of the retrieval performance for the backbone and ASTERX trained
on COMICS [36] and/or TINTIN [7], and subsequently evaluated on COMICS or TINTIN to
evaluate cross-dataset performance. We observe that cross-dataset pre-training works best.
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Figure 3.4: Retrieval performance of our method against the number of candidates sampled
during training.

The fully random sampling strategy is outperformed by all other sampling strategies.
Secondly, Table 3.4 provides insight into the generalisability of the data domain. Three

configurations of fine-tuning both the feature extraction backbone and the sequence encoder
on different datasets are shown. All retrieval evaluation results are on the TINTIN corpus
validation set. Unsurprisingly, fine-tuning both models on the target dataset results in the
best performance. However, only training both models on the COMICS dataset already
approaches similar performance of DINO trained on the target dataset (as in Table 3.2).

Finally, Figure 3.4 displays the evaluation retrieval performance of our method based on
the number of candidates used during training. The graph clearly depicts a stark increase in
performance between 0 and 50 candidates, and flattens beyond 50 candidates, indicating an
optimal value of around 64 candidates.

3.3.2 Success and Failure Cases

To form a qualitative understanding of the learned representations of our method in com-
parison to other methods, two retrieval results are presented in Figure 3.5. In both cases, the
original comic page with the masked panel of interest is shown, as well as retrieval results
from ASTERX (ours), DINO and the supervised ResNet-50. In both cases, only ASTERX re-
trieved the correct target panel. In the left case, DINO retrieved a panel from the same comic,
in which one of the main characters of this comic is portrayed. The supervised ResNet-50
retrieves a visually similar panel but is unable to retrieve a panel from the correct comic.
On the right, all results are close in visual style, but DINO returns a panel from a different
edition of the same comic series, whereas ResNet-50 selects a panel from a different series
altogether. Interestingly, all three results are approximately the right shape.

Figure 3.6 provides insight into two cases in which ASTERX is unable to retrieve the
correct panel. In the left case, the retrieved panel is very similar (both visually and seman-
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(a) ASTERX

(b) DINO (c) R50

(d) ASTERX

(e) DINO

(f) R50

Figure 3.5: Two examples of retrieval results of our method (ASTERX) compared to a su-
pervised ResNet-50 [31] and the unsupervised DINO [8] method. In both cases, our method
can retrieve the correct panel while the other methods cannot.

tically) to one of the neighbouring panels. Interestingly, DINO makes the same mistake in
this case. In the right case, once again, the panel ASTERX retrieves is very similar to the
correct panel in many aspects. This time DINO can retrieve the correct panel, while the su-
pervised ResNet-50 retrieves a panel that is similar in terms of color distribution but is from
a different comic than the neighbouring panels altogether.

3.3.3 Feature Space Exploration

In this section, we perform a qualitative analysis of feature spaces derived from ASTERX
and DINO. By leveraging t-SNE for dimensionality reduction, we can visualize the high-
dimensional feature vectors in a two-dimensional space. This visualisation helps in under-
standing the structural properties and organisation of the learned feature spaces.

Figures 3.8 and 3.8 illustrate the t-SNE projections of ASTERX and Pooled DINO feature

(a) ASTERX

(b) DINO

(c) R50

(d) ASTERX

(e) DINO (f) R50

Figure 3.6: Two examples of retrieval results of our method (ASTERX) compared to a su-
pervised ResNet-50 [31] and the unsupervised DINO [8] method. In both cases, our method
was unable to retrieve the correct panel.
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Figure 3.7: t-SNE [68] projections of ASTERX features of the entire validation set. Even in
these projections, clear clusters of comic panels within comics and clusters of comics within
syles are captured.

vectors, respectively, extracted from the panels of a single comic. These figures provide a
comparative view of how both methods capture and organise comic panels that follow each
other in sequence. The t-SNE projection of ASTERX feature vectors demonstrates a distinct
sequential pattern that aligns with the nature of comic panels. Panels that are temporally
adjacent in the comic sequence tend to form tight clusters in the t-SNE space. This suggests
that ASTERX effectively captures the continuity and progression inherent in the comic nar-
rative, preserving the contextual relationships between consecutive panels. In contrast, the
t-SNE projection of the Pooled DINO feature vectors is scattered, without much pattern in
terms of adjacent panels. These DINO features do not encode the sequential dependencies
between panels. Instead, the features appear more independently distributed, reflecting a
less cohesive representation of contextual information.
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ASTERX DINO

(a) The Bluecoats

ASTERX DINO

(b) Suske en Wiske

Figure 3.8: t-SNE [68] projections of ASTERX features in comparison to t-SNE projections of
DINO [8] features of two comics.

3.3.4 Oracle Robustness Studies

Training ASTERX requires bounding box annotations for panels. Within the TINTIN corpus
and the COMICS datasets, annotated bounding boxes are provided. However, methods for
automated panel bounding box extraction exist but are not as perfect as human annotations.
Hence why we perform a robustness study of ASTERX concerning the permutation of panel
bounding boxes, to simulate how ASTERX would perform when an automated method is
applied. Figure 3.9 shows the results of this study. Each graph displays the results of train-
ing ASTERX with permuted bounding boxes (translated, up-scaled and down-scaled) by a
specified severity (percentage of page size). For all types of permutations, the performance
of ASTERX decreases as the severity increases. Severity beyond 25% seems to be a break-
point for most types of permutation.

Figure 3.9: Panel retrieval performance of ASTERX when different kinds of permutations
are applied to the panel bounding boxes.
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Chapter 4. Context Normalisation

Our second experiment focuses on the challenging task of unsupervised character-level rep-
resentation learning in comics. This complexity arises from the diverse designs of comic
characters, their varied framing, posing, and expressions [49, 11]. Additionally, character
drawings in comics are often influenced by preceding panels, making the task even more
intricate. For example, if a character is fighting in one panel, it is likely that the character
will also be fighting in the next panel. Such inferences are made by readers but are hard to
explicitly capture in computational approaches [14, 15, 17, 39]. Our approach aims to isolate
and exclude contextual elements such as style, design, and sequence information, thereby
concentrating exclusively on aspects like posing, framing, and expressions of the charac-
ter instance. This method builds on the sequence representations discussed in Chapter 3,
applying these foundational insights to enhance our character-level representation learning.

4.1 ELRIC

We introduce contExt normaLisation for Representation learning In Comics (ELRIC, named
after the Elric brothers in Fullmetal Alchemist). ELRIC integrates the contextual representa-
tions learned by ASTERX — capturing information from adjacent comic panels — into the
training process of existing self-supervised learning frameworks. By doing so, ELRIC learns
context-independent features for a specific panel or even a specific region within a panel.
This context-normalised representation makes ELRIC highly suitable for panel or region-
specific downstream tasks such as emotion character matching and emotion classification.
ELRIC is inspired by related works on residual learning [31, 37, 43].

4.1.1 Context Injection

Within the ELRIC framework, frozen context-rich features are combined with learnable fea-
tures before the loss function computation in a residual connection. This setup forces the
learnable features to learn aspects which are not encoded in the context of the region of
interest (ROI):

v′ =
f(v) + c

m
, (4.1)

in which v represents the learnable feature vector, c denotes the frozen context feature vector
and m is a learnable normalisation vector. The function f is a learnable linear projection of
c into the dimensionality of c. By incorporating context-rich features into the learning pro-
cess, ELRIC effectively normalises context-dependent variations. This enables the model to
focus on region-specific attributes, enhancing its performance in tasks that require detailed
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Figure 4.1: Diagram of the ELRIC framework, in which ASTERX context features are used
to enhance available information during training. As a result, region-specific (ROI: Region
of Interest) features become less context-dependent during inference.

character-level analysis. The result is a robust framework capable of isolating essential char-
acter traits, thereby facilitating more accurate and context-independent character represen-
tation learning in comics. Figure 4.1 showcases the ELRIC framework diagrammatically.

4.2 Experiments

We evaluate the performance of ELRIC in two settings: character re-occurrence matching
using a clustering approach and emotion classification. In the character matching setting,
we compare the classification performance of ELRIC with DINO [8] trained on the COMICS
[36] dataset first, and then on the characters images in the TINTIN [7] corpus and ASTERIX
trained on the panel images of the TINTIN corpus. For emotion classification, we extend

Figure 4.2: Two examples of valence arousal decomposition in comic panels.
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our comparison by including a supervised ResNet-50 [31]. This ResNet-50 model is trained
on the opposite dimension of emotion relative to the evaluation dimension. Specifically,
for arousal evaluation, the ResNet-50 is trained on valence classification, and for valence
evaluation, the ResNet-50 is trained on arousal classification. Through this setup, we gain
an understanding of to which extent emotion classification generalises between these two
dimensions.

4.2.1 Data

For our experiments with ELRIC, we utilise two datasets: the COMICS dataset [36] and
the TINTIN corpus [7]. The COMICS dataset is only used for pre-training purposes. The
TINTIN corpus is split into 80% training, 10% validation, and 10% test sets. In the context of
the emotion classification task, TINTIN corpus annotation which describe two key dimen-
sions are utilised. These two dimensions are valence and arousal. Valence represents the
positivity or negativity of an emotion, ranging from unpleasant to pleasant. For instance,
emotions like sadness and anger have low valence, while happiness and excitement have
high valence. Arousal, on the other hand, measures the intensity of the emotion, from calm
to excited. Low-arousal emotions include relaxation and boredom, whereas high-arousal
emotions encompass fear and exhilaration. Both dimensions are discretised into 5 levels
(classes) within the TINTIN corpus.

The character-level annotations in the TINTIN corpus, which include bounding boxes
of character occurrences and character names, allow us to focus on specific regions within
panels and evaluate character-matching performance. We filter the dataset to include only
characters that appear at least 25 times. This filtering ensures that our model is trained on a
robust and representative subset, consisting of about 100 characters and about 3.000 training
images.

4.2.2 Experimental Setup

Our experiments with ELRIC build upon the experiments conducted for ASTERX, utilising
the same experimental setup and model parameters for the ASTERX components as stated
in section 3.2.2. We introduce a fifth candidate sampling method in ASTERX training tai-
lored for ELRIC, where candidates are sampled based on the comic characters that appear
in a panel. This method ensures that only panels containing the same comic character as

Method Accuracy↑ Precision↑ Recall↑ F1↑ Silhouette↑
DINO [8] 78.7 80.7 78.8 78.8 0.602
ASTERX 61.2 63.5 62.4 63.1 0.355
ELRIC (ours) 87.4 87.9 87.4 87.9 0.772

Table 4.1: Results of linear fine-tuning on ELRIC features for the character matching task.
ELRIC outperforms all baseline methods (ASTERX and DINO [8]) by significant margins.
The results of ASTERX indicate the negative effect of contextual information on single in-
stance classification.
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Method Accuracy↑ Precision↑ Recall↑ F1↑ Silhouette↑
Valence Classification
ResNet-50 [31] (Arousal) 32.3 31.5 33.2 32.9 -0.138
DINO [8] 59.2 53.3 59.2 55.3 0.349
ASTERX 37.5 37.9 36.4 36.4 0.032
ELRIC (ours) 68.3 64.9 63.5 64.4 0.571

Arousal Classification
ResNet-50 [31] (Valence) 31.7 31.8 31.2 31.3 -0.192
DINO [8] 54.4 52.8 54.4 53.0 0.243
ASTERX 36.4 38.6 35.4 37.4 0.010
ELRIC (ours) 63.7 60.4 62.2 62.0 0.533

Table 4.2: Performance of ELRIC in comparison to baseline methods for the emotion classifi-
cation tasks. ELRIC outperforms all baseline methods (ASTERX, DINO [8] and a ResNet-50
[31] trained on the orthoganl dimension of emotion). The results of the ResNet-50 indicate
that emotion classification does not generalise smoothly across dimensions.

the target panel are sampled. In our experiments, we focus on integrating ELRIC into the
DINO optimisation framework. We optimise a ViT S/16 model using the DINO framework,
applying ELRIC context injection before the DINO head is used. The ViT S/16 model is op-
timised with the AdamW optimiser, using a batch size of 256, and a learning rate of 0.0001,
over 25 epochs. The ASTERX context features are projected from 768 dimensions down to
384 dimensions, matching the dimensionality of the ViT B/16 features.

4.2.3 Character matching

The TINTIN corpus offers detailed character annotations, which we leverage in our first
evaluation task for ELRIC. In this task, ELRIC features are used as input for a k-nearest
neighbours (kNN) classifier with k = 5. The kNN classifier is trained to perform character
classification, providing insight into how well ELRIC constructs character clusters in fea-
ture space. To obtain a holistic view of both classification and clustering performance, we
compute several metrics: classification accuracy, precision, recall, f1-score, and the cluster
silhouette score. Table 4.1 presents the performance of ELRIC compared to various base-
line methods based on these metrics. ELRIC significantly outperforms all other methods in
every metric in the character classification task, indicating that the injection of contextual
features enhances the character-specific richness of the learned features.

4.2.4 Valence and Arousal Classification

In addition to character matching, we evaluate ELRIC’s performance in emotion classifica-
tion through linear probing. This task involves predicting five classes of valence and arousal,
which represent the sentiment and the intensity of emotions.

For this evaluation, we train a linear classifier using ELRIC features as input. The per-
formance of this classifier is then assessed in terms of the same classification and clustering
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metrics mentioned in section 4.2.3. We compare ELRIC against several baseline methods:
a supervised ResNet-50 trained on the orthogonal dimension of emotion (i.e., for arousal
evaluation, the ResNet-50 is trained on valence classification and vice versa), DINO, and
ASTERX.

Table 4.2 showcases the performance of ELRIC and the baseline methods across vari-
ous metrics. ELRIC consistently outperforms the other methods in emotion classification,
demonstrating higher accuracy and better cluster cohesion. The results indicate that EL-
RIC’s ability to isolate context-independent features significantly enhances its performance
in distinguishing and classifying emotional states. Notably, the supervised ResNet-50 does
not generalise well into the other dimension of emotion.

4.3 Analyses

In this section, we aim to understand ELRIC through several ablation studies and qualitative
results analysis of ELRIC in character matching and emotion classification settings.

4.3.1 Ablations

Two ablation studies are showcased in this section. The first ablation study focuses on the
effect of ASTERX candidate sampling methods on the performance of ELRIC. Secondly, we
show the effect of training all required components (backbone, ASTERX and ELRIC) on dif-
ferent variations of the dataset to understand the robustness of our method with respect
to domain shifts. Table 4.3 showcases the result of our first ablation study, where various
sampling techniques of ASTERX are shown, as well as the performance of the resulting EL-
RIC performance on the character matching and emotion classification tasks. Similar to the
performance of ASTERX, using mixed sampling strategies demonstrate increased perfor-

Character Valence Arousal
Method Accuracy F1 Accuracy F1 Accuracy F1

Random 79.9 79.5 60.4 61.0 59.6 59.3
Pure Sampling
Intensity 81.4 81.9 62.1 60.4 59.8 59.8
Ratio 81.0 80.7 62.6 62.1 60.4 59.5
Comic 85.5 85.0 65.3 65.6 63.3 62.0
Character 83.2 83.5 64.9 64.3 63.5 62.3

Mixed Sampling
Intensity + Random 82.1 83.5 63.5 62.8 61.3 62.4
Ratio + Random 82.4 80.2 63.6 63.4 60.9 60.9
Comic + Random 87.4 87.3 68.3 67.3 63.7 63.6
Character + Random 85.8 83.8 64.2 64.5 61.5 60.7

Table 4.3: Results of the ASTERX sampling methods ablation study where the effect of
ASTERX sampling methods on the performance of ELRIC in all three tasks is measured.

22



Backbone ASTERX ELIRC Accuracy Precision Recall

COMICS [36] COMICS COMICS 10.4 12.6 13.3
COMICS COMICS TINTIN [7] 34.8 37.2 36.7
COMICS TINTIN TINTIN 74.2 73.7 76.7
COMICS → TINTIN TINTIN TINTIN 87.4 87.9 87.4
TINTIN TINTIN TINTIN 43.8 45.5 44.3

Table 4.4: Results of the dataset ablation study, where the performance of ELRIC on the
character matching task is measured when different components of the ELRIC pipeline are
trained on different datasets.

mance compared to pure sampling strategies. Interestingly, the same comic-based sampling
method outperforms the character-based sampling method in all evaluation tasks by a small
margin. These results further indicate that a balance between specificity and variation is re-
quired for strong representations.

Secondly, table 4.4 provides insight into the effect of different datasets on the perfor-
mance of ELRIC. We show the dataset used to train the ASTERX backbone, ASTERX and
ELRIC as well as the performance of ELRIC on the character-matching task. Unsurpris-
ingly, the configuration where the domain shift is smallest shows the best performance. The
ASTERX backbone however requires a larger amount of data (in the form of the COMICS
dataset) for the best performance.

4.3.2 Success and Failure Cases

The following results sections provide examples of success and failure cases of ELRIC in
both the character matching task, as well as the emotion classification task.

(a) ELRIC

(b) DINO

(c) ELRIC

(d) DINO

Figure 4.3: Two cases in which ELRIC successfully classified the same character. On the left,
a page from a comic is shown along with a bounding box for a character of interest, while
the right images show the top 3 most similar characters using ELRIC and DINO [8].
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(a) ELRIC

(b) DINO

(c) ELRIC

(d) DINO

Figure 4.4: Two cases in which ELRIC failed to classify the same character. On the left, a
page from a comic is shown along with a bounding box for a character of interest, while the
right images show the top 3 most similar characters using ELRIC and DINO [8].

Character Matching

In the character matching task, ELRIC clusters characters by identifying the most similar
character images in feature space. Figure 4.3 showcases two examples where ELRIC cor-
rectly matched characters, whereas DINO failed. In the left example, ELRIC’s top three
retrieved samples exhibit a high degree of similarity to the target character in terms of fram-
ing, posing, and clothing. In the right example, despite notable changes in facial expression
across the samples, ELRIC still correctly identified images of the target character. In con-
trast, while DINO’s retrieved samples in the right example exhibit similar posing to the
target character, they fail to match the correct character, indicating a limitation in DINO’s
character recognition capabilities. In the right example, the characters retrieved by DINO
are very similar in terms of framing - arguably more so than the characters retrieved by
ELRIC.

In the two samples in figure 4.4, we examine two cases where ELRIC faces difficulties in
the character matching task. These examples highlight the inherent challenges of character
matching in comics. In the first example, only the hand of the character is visible, making
it almost impossible to identify the character. Interestingly, ELRIC’s most similar retrieval is
another hand. In the second example, the character of interest is depicted as a small image.
ELRIC retrieves characters with similar posing and framing, but only the third retrieval is
the correct character. For both examples, DINO fails to retrieve the correct character.

Figure 4.5: Two qualitative examples of ELRIC in the emotion classification task, where
ELRIC successfully classified both dimensions of emotion.

24



Figure 4.6: Two qualitative examples of ELRIC in the emotion classification task, where
ELRIC failed to classify both dimensions of emotion.

Valence and Arousal Classification

The arousal and valence analysis in this study provides a deeper understanding of ELRIC’s
performance in emotion classification tasks. Figure 4.6 showcases two instances where EL-
RIC successfully classified both valence and arousal, while DINO failed. These examples
highlight the inherent challenges of valence and arousal classification. In the left case, part
of the subject’s face is covered, making it difficult to assess emotions accurately. In the right
case, the challenge lies in capturing the low arousal level, which ELRIC successfully iden-
tified. Figure 4.5 presents two scenarios where ELRIC did not perform as expected, failing
either in both dimensions (left) or only in the arousal dimension (right). In both cases, DINO
also failed in at least one dimension. In the right case, the failure is attributed to the diffi-
culty in discerning subtle differences in low arousal states, which underscores the nuances
involved in emotion classification tasks.

4.3.3 Oracle Robustness Studies

Similar to how ASTERX relies on panel bounding boxes for training, our experiments with
ELRIC rely on character bounding box annotations. To this end, we perform an oracle ro-
bustness study similar to the oracle robustness study for ASTERX in section 3.3.4. The anno-
tated character bounding boxes in the TINTIN corpus are translated, down-scaled and up-
scaled with a certain severity when training ELRIC. Figure 4.7 shows the effect of these per-
mutations on the character-matching performance of ELRIC. Unsurprisingly, as the severity

Figure 4.7: Character matching performance of ELRIC when different kinds of permutations
are applied to the character bounding boxes.
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of permutations increases, performance decreases. Compared to ASTERX however, ELRIC
performance decreases faster for the upscaling permutation.
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Chapter 5. Cultural Analysis

In this chapter, we explore how ASTERX and ELRIC can contribute to the field of cultural
analysis in comics. This chapter is divided into two sections: one focusing on ASTERX and
the other on ELRIC.

5.1 ASTERX Studies - Panel Continuity

In this section, we explore the contributions of ASTERX to cultural analysis, with a focus on
the continuity aspects of comic panels. We examine how different genres, styles, and regions
of origin vary in terms of continuity. We decompose continuity into two facets: euclidean
distance and angle. The angle is calculated as the cosine distance between the difference
vectors of two consecutive pairs of panel embeddings (i.e., how much the angle changes
between three consecutive panels).

Figure 5.1 shows the distributions of Euclidean distance and angle differences across
the entire TINTIN corpus. The distance distribution is slightly skewed towards longer dis-
tances, roughly following a gamma distribution. The angle distribution is dense around an
angle difference of 0 and drops off swiftly between 1

2
π and π radians.

5.1.1 Genre, Region of origin and Style

Figures 5.3 illustrate the distance distributions per category of specific attributes in the
TINTIN corpus: genre, region of origin, and style, respectively. Notable outliers in terms

Figure 5.1: Histogram of the Euclidean distance between two consecutive panels and the
angle between two consecutive pairs of panels in the features space of ASTERX of the entire
TINTIN corpus. The angle is measured as the difference of the angles of two consecutive
pairs of panels in radians.
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Consecutive panel continuity in Lucky Luke - Daisy Town (Belgian Western, 1983).

Consecutive panel continuity in Broken Fists (Iraqi Action, 2018).

Figure 5.2: Two examples of consecutive panel continuity. According to our analysis, con-
secutive panels in Western comics are conceptually closer compared to consecutive panels
in Action comics. Furthermore, in comics of Central Asian origin conceptual gaps between
consecutive panels are larger compared to comics of European origin.

of average distance include comics in the “Romance” and “Western” genres. Comics in
the “Romance” genre exhibit relatively large distances between panels, while comics in the
“Western” genre show relatively small distances between panels. Similarly, comics from
“Central Asia” form the upper bound within the region categorisation, while comics from
“Oceania” form the lower bound. Finally, comics in the “Manga” style have the highest aver-
age distances, while those in the “Classic” style have the lowest. When examining variability
(i.e., the range of the box plots), we find that comics within the “Children’s” and “Autobiog-
raphy” genres display low variability in panel distances, whereas “Comedy” and “Action
Adventure” genres exhibit high variability. Variability across different regions and styles
is similar. Where the consecutive panel distance seems to carry some descriptive value be-
tween different categories, the consecutive panel pair angle difference is very uniform across
different categories, as demonstrated by figure 5.4. Across all attributes and all categories

Figure 5.3: Distribution of Euclidean distance between two consecutive panels in the fea-
tures space of ASTERX within genres, regions of origin and styles of the TINTIN corpus.
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Figure 5.4: Distribution of difference of angles in radians between two consecutive pairs of
panels in the features space of ASTERX within genres, regions of origin and styles of the
TINTIN corpus.

within these attributes, the angle distribution is highly nondescript, indicating that this facet
does not carry any significant distinguishing value with respect to these categories.

5.1.2 Time: Historical and Length

The TINTIN corpus also offers insight into the year of publication of a comic and the length
of a comic in the number of pages. Figure 5.5 illustrates the distribution of consecutive
panel distances of ASTERX features across different decades of comic publication and vari-
ous comic lengths. One notable observation is that both the average and variability of con-
secutive panel distances have increased over the decades. This trend suggests that comics
published in more recent decades tend to exhibit greater diversity in panel transitions. Re-
garding comic length, the average and variability of the consecutive panel distance metric
remain stable for comics up to about 30 pages. However, for comics longer than 30 pages, the
average consecutive panel distance increases, indicating that longer comics may incorporate
more varied and expansive panel transitions.

Figure 5.5: Distribution of Euclidean distance between two consecutive panels in the fea-
tures space of ASTERX within different decades and comic length (in number of pages) of
the TINTIN corpus.
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5.1.3 Discussion

Using the ASTERX feature space, we demonstrated how comics vary in terms of consecutive
panel continuity for attributes such as genre, region of origin, style, decade of publication,
and comic length. While the analysis of the cosine angles between consecutive panels re-
vealed no patterns, the analysis of the Euclidean distance provided valuable insights into
differences.

Most notably, Autobiography, Children’s, and Western comic genres showcase relatively
small consecutive panel distances on average, while Romance and Supernatural genres ex-
hibit larger distances. In terms of region of origin, Central Asia and Southeast Asia have
large consecutive panel distances on average, whereas comics from Europe and Oceania
showcase small distances. Finally, comics in the Manga style exhibit large distances, while
those in the Classic style show small distances. Regarding time-based aspects, we see an
increase in the distance over decades, reaching a maximum around 1980. This can be ex-
plained by the prevalence of Classics from the 1950s or earlier, while many Manga were
published after 1980. Comic length does not seem to carry much significance with respect
to panel distance in the ASTERX feature space.

Our findings within this analysis align with existing research and attempt to quantify
continuity aspects of comics [1, 25, 56] concerning cultural aspects. Furthermore, our find-
ings within the continual aspects of comics also align with leading theories in the sequential
processing of visual narratives from a psychological perspective [34, 5, 63, 38, 47].

5.2 ELRIC Studies - Character Instance Variation

Following the analysis performed using ASTERX features, we conduct a similar analysis us-
ing ELRIC features at the character level. Specifically, we calculate the intra-cluster distance
of ELRIC feature vectors within character clusters in the TINTIN corpus. These statistics
provide insights into how varied different instances of the same characters are for various
descriptive attributes such as genre and style. Figure 5.6 illustrates the distribution of all
intra-cluster distances across the entire TINTIN corpus. Similar to the ASTERX distance
distribution, this distribution roughly follows a gamma distribution, with a tail extending

Figure 5.6: Distribution of intra-cluster distance of character-level features of ELRIC over
the entire TINTIN corpus.
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Character variation in Akira
(Japanese Manga, 1987).

Character variation in Nell’Impero degli Incas
(Italian Classic, 1936).

Figure 5.7: Two examples of character instance variation in two different regions of origin,
styles and decades. In each case, the leftmost example represents the closest instance to the
character cluster mean in the ELRIC feature space, and the other two instances represent the
two least similar instances in the ELRIC feature space.

towards longer distances.

5.2.1 Genre, Region of origin and Style

Figure 5.8 showcases the intra-cluster distance distribution per category for the genre, global
region of origin, and style attributes within the TINTIN corpus. Within the genre attribute,
notable observations include the “Biography” and “Thriller” genres, which exhibit rela-
tively high average intra-cluster distances, and the “Children’s” and “Western” genres, which
show relatively low average intra-cluster distances. In terms of variability, the “Biography”
genre stands out with high variability, whereas the “Children’s” genre shows low variability.

For the global region of origin attribute, the lowest average intra-cluster distance is ob-
served in “Oceania,” while the highest is recorded in “Central Asia". The average intra-
cluster distance is very similar between all regions. Regarding the style attribute, the “Clas-
sic” style exhibits the lowest intra-cluster distances, whereas the “Manga” and “Real Exag-
gerated” styles show the highest intra-cluster distances. Across both global regions of origin
and style attributes, the variability in intra-cluster distances is similar.

Figure 5.8: Distribution of Euclidean distance of ELRIC feature vectors within character
clusters for different genres, regions of origin and styles of the TINTIN corpus.
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Figure 5.9: Distribution of Euclidean distance of ELRIC feature vectors within character
clusters for different decades and comic lengths of the TINTIN corpus.

5.2.2 Time: Historical and Length

A similar analysis is applied to the time-based aspects of the TINTIN corpus using ELRIC
character-level features. The results, displayed in Figure 5.9, mirror those obtained with
ASTERX features. Specifically, we observe that the average intra-cluster distance has in-
creased over the decades, suggesting that character representations become more diverse in
more recent publications. Additionally, the average intra-cluster distance remains steady for
comics up to about 30 pages, after which it increases, indicating that longer comics exhibit
greater variability in character features.

5.2.3 Discussion

The ELRIC feature space analysis reveals significant variations in character instance features
across different attributes, paralleling the ASTERX panel continuity findings.

Genres such as Autobiography, Children’s, and Western exhibit smaller average intra-
cluster distances, indicating more consistent character representations within these cate-
gories. In contrast, genres like Romance and Supernatural show larger distances, reflecting
greater variability in character design and attributes. This implies that Romance and Super-
natural genres tend to have a broader spectrum of character depictions. From a regional per-
spective, comics originating from Central Asia, Southeast Asia, and the Middle East demon-
strate larger intra-cluster distances. This suggests that character designs in these regions
are more varied, potentially reflecting the diverse cultural influences and storytelling tech-
niques prevalent in these areas. Conversely, comics from Oceania and Europe show smaller
distances, indicating a more uniform approach to character representation.

The analysis of style attributes reveals that the Manga style has the highest average intra-
cluster distances, indicating significant character variability. This is consistent with related
research into diversity and creativity in Manga character design and framing [45, 48], often
spanning a wider range of visual elements. On the other hand, the Classic style exhibits the
smallest distances, reflecting more consistent and perhaps traditional approaches to charac-
ter representation - also in line with related work [40].

Examining the time-based aspects, the data indicates an increase in character represen-
tation variability over the decades, with modern comics displaying more diverse designs.
This trend aligns with broader changes in the comic industry over the decades described
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within the data [41, 55]. Furthermore, longer comics also exhibit greater character variabil-
ity, suggesting that extended narratives provide more opportunities for allowing readers to
make inferences based on a foundation laid in earlier pages of comics. This data aligns with
leading theories within the domain inference theory and visual narratives [72, 71, 16]
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Chapter 6. Conclusion

This thesis explores the complex domain of multi-level representation learning in comics, in-
troducing ASTERX and ELRIC, two novelm methods in this domain. ASTERX is designed
to capture sequential representations within comic panels through masked language mod-
elling for visual language. ELRIC aims to normalise this contextual information, increasing
performance in panel region-specific tasks. Our research demonstrates the efficacy of the
ASTERX model in capturing the continuity and progression of comic narratives through
sequential panel representations. ASTERX’s ability to maintain contextual relationships be-
tween panels is validated through various experiments and evaluation tasks. ELRIC sig-
nificantly outperforms baseline methods, in character matching and emotion classification
tasks. The incorporation of context-independent features allows ELRIC to achieve higher
performance in various metrics. In a broader scope, we showcase how domains which are
not as data rich can benefit from tailored representation learning setups, such as the sequen-
tial setup for ASTERX and the context-normalised setup for ELRIC. The resulting feature
spaces are shown to be a strong basis for cultural analysis of visual narratives. The results
described in our cultural analyses align with existing theories within visual linguistics and
psychology, but additionally providing a set of metrics that enable quantification of these
theories from a novel perspective.

6.1 Limitations

The main limitation of our introduced methods is the lack of understanding of page layout.
Certain aspects of visual narrative are encoded within the layout of a comic page. Some-
times panels within a comic page can even be read in multiple directions. Aspects such as
narrative continuity on the level of page layouts are not entirely modelled in our approach,
but often form a basis for both cultural analysis [58, 41, 62] and inferential analysis [13, 55, 4].

In addition, the multi-modality of comics and visual narratives as a whole are left un-
considered in this thesis. Where comics consist of both textual and visual features, our ap-
proaches are solely optimised for the visual aspects. The interplay between these multiple
modalities are shown to convey [60, 65, 19] many aspects that are not captured by just one
of the two modalities.
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[66] Barış Batuhan Topal, Deniz Yuret, and Tevfik Metin Sezgin. Domain-adaptive self-
supervised pre-training for face body detection in drawings, 2023.

[67] Gido M. van de Ven, Nicholas Soures, and Dhireesha Kudithipudi. Continual learning
and catastrophic forgetting, 2024.

[68] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of
Machine Learning Research, 9(86):2579–2605, 2008.

[69] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in
Neural Information Processing Systems, volume 30, 2017.

[70] Haoqing Wang, Yehui Tang, Yunhe Wang, Jianyuan Guo, Zhi-Hong Deng, and Kai Han.
Masked image modeling with local multi-scale reconstruction, 2023.

[71] Janina Wildfeuer. The inferential semantics of comics: Panels and their meanings. Po-
etics Today, 40(2):215–234, 2019.

[72] Francisco Yus. Inferring from comics: A multi-stage account. Quaderns de Filologia.
Estudis de Comunicacio, 3:223–249, 2008.

39


	Introduction
	Contributions

	Related Work
	Quantitative Approaches in Analysis of Comics
	Applications of Machine Learning in Comics
	Self Supervised Representation Learning
	Residual Learning

	Learning from Sequences
	ASTERX
	Pretext Tasks
	Candidate Sampling

	Experiments
	Data
	Experimental Setup
	Linear Fine-tuning
	Panel Retrieval

	Analyses
	Ablations
	Success and Failure Cases
	Feature Space Exploration
	Oracle Robustness Studies


	Context Normalisation
	ELRIC
	Context Injection

	Experiments
	Data
	Experimental Setup
	Character matching
	Valence and Arousal Classification

	Analyses
	Ablations
	Success and Failure Cases
	Oracle Robustness Studies


	Cultural Analysis
	ASTERX Studies - Panel Continuity
	Genre, Region of origin and Style
	Time: Historical and Length
	Discussion

	ELRIC Studies - Character Instance Variation
	Genre, Region of origin and Style
	Time: Historical and Length
	Discussion


	Conclusion
	Limitations


