
End-to-End Object Detection
with Transformers on Edge Devices

Sam Titarsolej

Layout: typeset by the author using LATEX.
Cover image: atlasreizen.be

End-to-End Object Detection
with Transformers on Edge Devices

Sam Titarsolej
12206385

Bachelor thesis
Credits: 18 EC

Bachelor Kunstmatige Intelligentie

University of Amsterdam
Faculty of Science
Science Park 904

1098 XH Amsterdam

Supervisor
MSc. Xiaotian Guo

Parallel Computing Systems
Faculty of Science

University of Amsterdam
Science Park 907

1098 XG Amsterdam

Jun, 2021

Abstract

End-to-End Object Detection with Transformers (DETR) [1] shows great perfor-
mance in the task of object detection, without the need for complex and manual
fine-tuning for merging duplicate predictions. The deployment of systems such as
DETR on devices with limited computational resources, such as edge devices, is
still a challenge however. In recent years, the computer science paradigm of edge
computing has shown great potential in reducing the gap between data sources
and the location at which the data streams are processed. The research described
in this thesis aims to reduce the trade-off between inference accuracy and infer-
ence speed of DETR on edge devices. We study knowledge distillation techniques
for simplification of the DETR architecture, as well as parallelization and model
splitting approaches to enable DETR to be deployed on an NVIDA Jetson TX2
edge device. The results of our experiments with distillation and parallelization of
DETR provide insight in bottlenecks of our proposed pipeline, as well as a baseline
to build upon in future research.

Contents

1 Introduction 1
1.1 Related Work . 2

2 Theoretial Framework 3
2.1 Edge Computing . 3

2.1.1 Deep Learning at the Edge 4
2.2 DETR Revised . 4

2.2.1 ResNet Revised . 5
2.2.2 Transformers Revised . 6
2.2.3 Learning Object Queries . 8
2.2.4 Bipartite Matching Loss . 8

2.3 Knowledge Distillation . 10

3 Experiments 11
3.1 Experimental Setup . 11
3.2 Backbone Distillation . 12
3.3 Inference Parallelization . 12

4 Discussion 16
4.1 Future Work . 17
4.2 Conclusion . 17

Chapter 1

Introduction

Object detection is the task of predicting a set of bounding boxes and classes for
a certain number of objects in an image. State of the art approaches to object
detection require complex post-processing of predictions, and are often manually
fine tuned to merge duplicate bounding box predictions [1]. DEtection TRans-
former (DETR) [1] approaches object detection as a closed set problem, meaning
that the number of predictions by DETR is fixed. Through this approach of object
detection, DETR reduces the complexity needed to produce the same state of the
art results compared to more complex systems.

While DETR achieves state of the art results in object detection on the COCO
dataset [2] with this reduced complexity, deploying object detection systems to
devices with computational resource constraints is still a challenge. Modern archi-
tectures such as DETR come with a significant trade-off between the speed of the
system and the performance of the system [3]. By studying inference optimization
techniques on DETR, this thesis aims to answer the following research question:
How to perform object detection with Transformers on a computational resource-
constrained device? We propose new methodology that allows deep learning archi-
tectures such as DETR to be deployed on edge devices improving execution speed
without significantly losing prediction accuracy.

In many real-world scenarios, systems such as DETR are deployed on cloud servers,
usually introducing high latency due a long data transmission path. Thus, in time-
sensitive cases, ideally the data streams would ideally be (pre)processed closer to
the data source to reduce this latency. We propose a pipeline prototype to model
and test the latency of end to end object detection on edge devices.

1

Such a pipeline would be beneficial towards both scientific research, as well as
societal applications of deep learning systems. Reducing the trade-off described
by Bianco et al. [3] could help both machine learning related research as well as
non machine learning related research, through faster prototyping on less compu-
tational resource constrained hardware. It would also be helpful in granting access
to deep learning systems to a wider audience through deployment on for example
mobile devices.

To achieve such a pipeline we propose and test a set of optimization techniques.
These techniques include both parallelization of the DETR architecture across
multiple devices and distillation of the DETR architecture. Previous work on de-
ployment of deep learning models on devices with limited resources, focuses solely
on either one of these aspects [4] [5]. By combining these techniques we expect to
achieve faster inference time compared to the original DETR model, while main-
taining the performance produced by DETR.

1.1 Related Work
Plastiras et al. [4] achieve high precision and low processing time object detec-
tion on edge devices with their proposed Convolutional Neural Network (CNN)
based EdgeNet architecture. This architecture involves multiple CNN detectors,
improving the accuracy and processing time of their framework. The first CNN
in their system is responsible for the estimation of possible object locations in
an input image. Using a CNN-based tiling and selection technique, the outputs
of this first stage are refined. The tiling technique reduces the processing time
needed to process the image by finding the smallest region of an input image
that needs to be processed, using the outputs of the first stage. Plastiras et al. [4]
describe 90% precision at 0.015 seconds of processing time required using EdgeNet.

Research towards the distribution of object detection across multiple edge devices
and cloud computers (Ren et al., 2018) [6] proposes a network of distributed layers
of image feed compression and processing. Through this network, both the size
and the amount of the traffic between surveillance cameras and cloud processing
facilities are minimized. This work is mostly aimed at studying compression of
less relevant sections of an image for communication between the edge and the
cloud facility, and exposes a significant trade-off between compression ratio and
detection accuracy.

2

Chapter 2

Theoretial Framework

The experimental research described in this thesis builds upon research and studies
of others. To this end, the following sections describe these studies, to build a
fundamental theoretical framework for the experiments described in this thesis.

2.1 Edge Computing
Edge computing is a paradigm in the field of computer science that moves data
processing closer to the source of the data; the computing edge. Through edge
computing, the response and processing time of data pipelines can be improved,
and communication bandwidth with centralized data centers can be reduced. Edge
computing is made possible through edge devices (figure 2.1), which are often di-
rectly connected to a data source. Using edge devices, a topology of distributed
computing and processing nodes can be built, removing dependencies on central-
ized services and internet connections. The edge devices in this distributed network
however, often have limited computational resources, creating challenges for de-
ployment of computationally heavy tasks such as deep learning on these machines.

Figure 2.1: The role of edge devices in edge computing.

3

2.1.1 Deep Learning at the Edge

As shown by Bianco et al. [3], to perform inference modern deep learning sys-
tems, modern hardware is required. This requirement introduces challenges for
the inference on edge devices with limited computational resources. Bianco et al.
also demonstrate that the inference time of a ResNet50 image classifier is roughly
ten times slower on an edge device compared to inference on a high-end modern
graphics card. This reduction in speed makes for example real time video feed
processing with high accuracy close to impossible on such devices with limited
computational resources.

2.2 DETR Revised
The focus of our research is the optimization of DETR [1] for deployment on
edge devices. The DETR architecture (figure 2.2) uses a ResNet50 (He et al.) [7]
backbone and a Transformer (Vaswani et al.) [8] feature interpreter. In the DETR
model, the backbone generates a set of image features from an input image, forming
an internal representation of an image. Images that contain similar information,
result in a similar set of features. These features are then processed and interpreted
by the Transformer encoder-decoder blocks, resulting in a set of bounding boxes
and classes for the input image. Since DETR approaches object detection as
a closed set problem, the set of outputs is of a fixed size. Not only does this
imply that the model can only detect a limited number of bounding boxes, it also
means that the outputs of the system can contain no object detections. No object
detections occur when DETR detects less objects than the length of the closed
output set.

Figure 2.2: The DETR architecture diagrammatically, with a CNN backbone pro-
ducing image features and a Transformer interpreting these image features into
bounding box predictions.

For a better understanding of the DETR architecture, the individual components
are described in more depth in the following sections.

4

2.2.1 ResNet Revised

When training deep learning models, the vanishing gradient problem is often
encountered, resulting in sub-optimal training results. The vanishing gradient
problem occurs when the error signal of the output of a model travels backwards
through a model to calculate parameter updates. When the error signal reaches
the deeper layers of a model, the strength of the signal decays. As the error signal
decays, the parameter updates of these deeper layers become smaller, meaning
that these deeper layers are not updated proportionally.

Figure 2.3: Residual connections between convolutional blocks in the ResNet [7]
architecture, enabling error propagation throughout deeper layers of the model.

The ResNet architecture aims to eliminate the vanishing gradient problem through
residual connections. Residual connections (figure 2.3) in a model allow the error
signal to back propagate through the network without passing through non-linear
activation functions. By bypassing non-linear activation functions, the strength of
the error signal is maintained throughout the deeper layers of the model. Using
residual connections, the ResNet architecture allows for exceptionally deep models,
resulting in state of the art results in various computer vision tasks, as demon-
strated by He et al. [7]. He et al. propose multiple ResNet architectures of various
depths. ResNet50 is a deep Convolutional Neural Network (CNN) (LeCun et al.)
[9] with 48 convolutional layers and 50 layers overall. The depth of the architecture
provides systems using ResNet50 with a solid and low dimensional representation
of images, where similar images have a similar representation.

5

A CNN employs learnable convolutional kernels to learn relevant filters for image
processing. Each convolutional layer in a CNN consists of n such kernels and re-
duces the dimensionality of the input image. When trained, the learnable kernels
in a CNN represent feature filters for the input images. For instance, one such
feature filter might detect edges in the input image. By performing multiple con-
volutions sequentially, the CNN learns to apply both low level filters such as edge
detection, as well as high level filters such as facial feature detection.

2.2.2 Transformers Revised

For the interpretation of the image features produced by the ResNet50 backbone,
DETR uses a Transformer [8]. The Transformer is a model architecture that uses
attention mechanisms [10] [11] to learn to distinguish relevant information of an
input sequence, such as a text document, from irrelevant information. Originally,
the Transformer architecture was developed as a language model. In language
modelling the attention mechanism in the Transformer architecture enables a sys-
tem to model longer sequences as opposed to earlier techniques such as the Long
Short Term Memory (LSTM) architecture (Hochreiter & Schmidhuber) [12]. A
LSTM models an input sequence step by step. At each step the model stores
relevant information about the current step and about previous steps, and forgets
irrelevant information. By processing input sequences sequentially, the LSTM ar-
chitecture is unable to learn long term dependencies and references in an input
sequence.

Transformers approach sequence modelling differently. A Transformer models an
entire sequence at once, and filters relevant information from irrelevant informa-
tion through attention. Each element in a sequence attends to all other elements
in the sequence to a certain degree. The amount that an element attends to an-
other element describes how closely these two elements are related. In Language
modelling, referential words highly attend to the words they refer to for example.

Attention(Q,K, V) = softmax(
QKT

√
n

)V (2.1)

Attention mechanisms work through three important features: query vectors, key
vectors and value vectors. The query vector describes what information needs to
be retrieved from an input sequence to process the sequence, while the key and
value vectors describe the information in the input sequence. More specifically, the
key vector is a representation of the input sequence and the value vector is a repre-

6

sentation of what these keys represent semantically. In the attention mechanism,
the query vector queries value vectors through the key vector. Mathematically, the
attention mechanism is a normalized dot product between the query vector and
the key vector resulting in weights for the value vector. The value vector is then
multiplied with this normalized dot product in an element-wise manner, which in
turn results in a weighted sum of the value vector (equation 2.1).

Attention mechanisms (top left of figure 2.4) learn to attend to certain parts of
a sequence by learning to generate these query, key and value vectors from the
input vectors. The query, key and value vectors are the result of a dot product
between the input sequence and a query, key and value weight matrix. The weights
in these matrices are subject to optimization during the training process of the
model, enabling the model to learn to attend to certain parts of a sequence more
than others. After the scaled dot product is applied to the query, key and value
vectors, the results are concatenated and fed through a single feed forward layer.

Figure 2.4: Transformer architecture with N encoders & decoders and the atten-
tion mechanism diagrammatically (top left).

7

Transformers are composed of encoder and decoder decoder blocks, as shown in
figure 2.4. Encoder blocks encode an input sequence using the attention mechanism
into an internal representation of the input sequence. An encoder block employs
an attention block with a residual connection, followed by a feed forward linear
layer with a residual connection. Similar to residual connections in the ResNet
architecture, residual connections allow information to exist in deeper layers of
the Transformer architecture. Decoder blocks decode the internal representation
of the input sequence to make a prediction depending on the task at hand. The
input for the encoder block is the input sequence, while decoder blocks take both
the input sequence to generate queries, as well as the output of an encoder block
as input to apply these queries on. To allow for more complex sequence modelling,
the encoder decoder block architecture is chained N times, making the Transformer
model deeper.

2.2.3 Learning Object Queries

A key part in the success of Transformers on sequence processing is the query vector
of the attention mechanism. In language modelling the query vector is an internal
representation of what information needs to be retrieved from a sequence of words
or characters. Since the DETR architecture processes images and not sentences or
text documents, these query vectors play a different role in the Transformer of the
DETR model. The query vectors represent what information needs to be retrieved
from an input image for the Transformer in DETR. In language modelling the
Transformer learns to generate these query vectors based on the input sequence.
DETR learns to compose more general query vectors during the training process
that are not based on single input images, but are applicable to all images. These
queries are the input for the decoders in the DETR Transformer. Visualizing
the learned queries after training DETR shows that the model learns to examine
different locations of an image on different scales.

2.2.4 Bipartite Matching Loss

As DETR predicts a closed set of bounding boxes and classes, the positions of these
predictions in the output set should not influence how the predictions of DETR are
interpreted. In order not to penalize the model for incorrect prediction positions,
a bipartite matching loss is employed (equation 2.2). By finding the minimal error
between a prediction and ground truths in a training set, the bipartite matching
loss matches predictions and targets. The set of relations (matches) between the
set of predictions and the set of ground truths is found, such that the sum of errors
between the predictions and the ground truths is minimized. Each element in the
set of predictions is matched to a element in the set of ground truths.

8

σ̂ = argmin
σ∈SN

N∑
i=1

Li(yiŷσi) (2.2)

All predictions in the closed set of predictions consist of a class prediction and
a bounding box prediction. A class prediction is a probability distribution over
the set of classes, meaning that the model predicts a probability for each class. A
bounding box prediction is represented by the width, the height and the center
coordinates (x, y) of the bounding box in the image. Since DETR predicts both
classes and bounding boxes, two separate error functions are combined to calculate
the prediction error of the model as shown in equation 2.3; a cross entropy loss
for the class, and a box-loss for the bounding box. When the prediction for a
bounding box is the empty set, and the ground truth value for that bounding box
is also the empty set, the value of this match loss is 0.

Lmatch(yi, ŷσ(i)) = −I{ci 6=∅}p̂(ci) + I{ci 6=∅}Lbox(bi, b̂σ(i)) (2.3)

The loss function of the bounding box prediction (equation 2.4) is a combination
of the L1-loss and the Generalized Intersection-Over-Union (GIOU) loss proposed
by Rezatofighi et al. [13]. This combined loss function takes into consideration
both the absolute displacement (L1) and overlap in area between two bounding
boxes (GIOU). Both elements in this loss function are scaled with hyperparame-
ters λGIOU and λL1.

Lbox(bi, b̂σ(i)) = λgiouLgiou(bi, b̂σ(i)) + λL1LL1(bi, b̂σ(i)) (2.4)

9

2.3 Knowledge Distillation
As deep learning models become more complex, expressed in the amount of lay-
ers of an architecture, the information learned during the training process of the
model is stored in the model less efficiently [14] [15] [16]. Knowledge Distillation
(Hinton et al.) [15] (Gou et al.) [16] aims to compress the information stored in
a large, complex model into a smaller model with reduced complexity. During the
process of knowledge distillation, a larger model acts as a teacher for a smaller
model. The smaller model tries to mimic the outputs of the larger model given a
certain input.

More recent research towards knowledge distillation on the ResNet architecture
specifically, (Gao et al.) [17], has demonstrated an increase of 1.8% in accuracy
on the task of image classification. The method proposed by Gao et al. [17]
uses Stage-by-Stage Knowledge Distillation (SSKD) to distill the information con-
tained in a ResNet34 (with 34 layers) into a ResNet18 (with 18 layers). Instead
of attempting to mimic the output of the larger ResNet34 model, the ResNet18
model learns to mimic the internal representations of ResNet34 of an input image
through SSKD. Each stage in the ResNet18 model is trained to mimic the cor-
responding stage in the ResNet34 model. When a certain stage of the ResNet18
model is trained, the preceding stages are frozen and not optimized any further.
The process of SSKD is schematically in figure 2.5

Figure 2.5: SSKD of a ResNet50 to a ResNet34. The green convolutional blocks
of the ResNet34 are being optimized in each stage, while the blue convolutional
blocks are frozen during the optimitzation of the green convolutional blocks.

10

Chapter 3

Experiments

The following sections provide an overview of our proposed techniques to optimize
the inference time of the DETR object detection system on hardware with scarce
resources. In the first of these sections, the general setup and hardware used in our
experiments is described. This setup applies to the experiments described in the
succeeding two sections. The first experiment is described in the second section
which involves the optimization of the image feature extraction backbone in DETR
(a ResNet50) through distillation. Our second experiment is described in section
three, and explains our approach to the parallelization of performing inference on
the hardware described in section 3.1.

3.1 Experimental Setup
Each of the experiments described in this section is conducted on a NVIDIA Jet-
son TX2. The TX2 is an AI edge computing device with a 256-core NVIDIA
Pascal GPU and 8GB of memory. NVIDIA provides a Software Development Kit
(SDK) for inference optimization of deep learning models on NVIDIA hardware;
TensorRT [18]. Before deployment on the TX2, all models used in our experiments
are optimized through TensorRT. The models are converted to TensorRT engines
through the Open Neural Network eXchange (ONNX) [19] format.

To evaluate our proposed techniques, the performance of our deployed pipelines
on the TX2 is measured in inference time in seconds, which is also converted to
images processed per second. The memory usage of our pipeline on the TX2 is
tracked during each experiment, as well as the power usage of the GPU of the
TX2.

11

3.2 Backbone Distillation
In our first experiment, we studied the feasibility of deploying the DETR architec-
ture with a ResNet34 backbone without significantly losing performance, through
SSKD of the original ResNet50 backbone in DETR. While the ResNet34 backbone
is trained to mimic the representation of the ResNet50 backbone, the Transformer
layers of DETR are frozen. By freezing the parameters of the Transformer, the
target features for the ResNet34 backbone remain constant throughout the distil-
lation process.

The performance of the ResNet34 backbone is measured through average precision
(AP) of the entire DETR pipeline, and compared to the AP of the DETR architec-
ture with ResNet50. Comparing the AP of DETR with ResNet34 to DETR with
ResNet50 will provide insight into how much knowledge is lost in the distillation
process. The resulting AP of DETR with ResNet34 is shown in table 3.1, along
with the number of parameters of our distilled DETR model.

Model # of Parameters AP
DETR-R50 49.2M 42.0
DETR-R34 (distilled) 46.8M 41.2
Difference 2.4M (4.8%) 0.8 (1.9%)

Table 3.1: The results of our SSKD experiment of the backbone of DETR from
a ResNet50 to a ResNet34. The number of parameters as well as the AP of the
DETR model with both backbones are shown.

3.3 Inference Parallelization
Our second experiment focuses on the parallelization of DETR across multiple
devices. To perform inference with DETR across multiple devices, the Message
Passing Interface (MPI) [20] is utilized. MPI allows multiple processes to commu-
nicate with each other on any scale and on multiple devices with minimal overhead.
Using MPI, the DETR architecture is split across two devices; the Jetson TX2,
and a workstation computer with a NVIDIA RTX 2070 Super. The workstation
and the edge device are connected over an internet connection.

12

Configuration Backbone on Transformer on
Full Jetson TX2 Jetson TX2
Backbone Jetson TX2 Workstation
Transformer Workstation Jetson TX2

Table 3.2: The configurations of our parallelization experiment. Each row shows a
different configuration, where the backbone and Transformer of DETR is deployed
on the specified devices.

DETR is split between the backbone and the Transformer. All permutations of
deploying these backbone and Transformer components on either the TX2 or the
workstation are tested except for running the entire architecture on the worksta-
tion. These permutations result in three different configurations as shown in table
3.2.

To take advantage of splitting the model across two devices, the backbone and
the Transformer run in parallel when processing a sequence of input images, such
as a live video feed, as demonstrated by figure 3.1. Through this parallelization
setup, the time spent computing features for image n using the backbone is also
used to predict bounding boxes with the Transformer for image n − 1. The re-
sults from the parallelization experiment are obtained by processing the first 1000
images from the COCO [2] 2017 validation dataset. During the experiment, infer-
ence time of both the backbone and the Transformer are measured, as well as the
memory usage and the power consumption. ResNet backbones of multiple sizes
are tested as well to measure the change in inference time of the backbone.

Figure 3.1: Our pipeline processes an image feed in parallel, with the backbone
and the Transformer of DETR processing images simultaneously.

13

Figures 3.2 and 3.3 show the results of our parallelization experiment expressed in
frames per second (FPS) and the inference times of different configuration of this
experiment. While the first figure shows the FPS of the parallelization pipeline
with different ResNet backbones, the second figure only show the results using
a ResNet50 backbone. The second figure also shows how long each individual
component (TX2, MPI & Workstation) of our inference pipeline takes.

Figure 3.2: FPS of our parallelized
inference pipeline for different ResNet

backbones

Figure 3.3: Inference time of our
parallelized inference pipeline of

different configurations

The data in figures 3.4 and 3.5 show the throughput of each deployed component
on the TX2 and the inference time spent on the TX2 respectively. Both figures
display these measures for three different sized ResNet backbones.

Figure 3.4: Inference speed of TX2
component in FPS

Figure 3.5: Inference time of TX2
component in seconds

14

Finally, figures 3.6 and 3.7 show the power usage and the memory usage of each
DETR component on the TX2 with different sized ResNet backbones.

Figure 3.6: TX2 power usage in watts Figure 3.7: TX2 memory usage in GB

15

Chapter 4

Discussion

Our knowledge distillation experiment of the ResNet50 backbone of DETR shows
that it is feasible to reduce the depth of the backbone from 50 layers to 34 lay-
ers, while staying within a 2% performance margin expressed in AP. Moreover,
the paralellization experiments show that replacing the ResNet50 backbone with
a ResNet34 backbone decreases the inference time of the backbone on the edge
device from 0.021 seconds to 0.012 seconds, or 42.8%. In terms of throughput
(FPS), the edge device is able to process over 80 images per second. In a real-
world scenario, with for example surveillance cameras providing a video feed with
30 FPS, a distilled ResNet34 backbone could process multiple such video feeds
on a single edge device. Distilling the ResNet50 backbone does not significantly
change the power usage and the memory usage of the Jetson TX2.

The results of the parallelization experiment also show that the main bottleneck of
our parallelization pipeline is the internet connection between the edge device and
the workstation. However, by interpreting this overhead as latency in inference,
instead of as a bottleneck in inference time directly, the actual inference time of
our parallelization pipeline is reduced from 0.04 seconds in the ’full’ configuration
to 0.033 seconds in the ’backbone’ configuration. Our pipeline decreases the total
inference time of DETR by 17.5% by running the Transformer of the DETR ar-
chitecture from the edge device to a powerful workstation.

Combining the results of the distillation feasibility study, and the parallelization
experiment, the inference time of DETR on edge devices is reduced from 0.031
of the ’full’ ResNet34 configuration to 0.024 seconds of the ’backbone’ ResNet34
configuration. These combined results show a 22.5% decrease in inference time. In
terms of throughput, combining our experiments achieves 41.6 FPS on the entire
DETR architecture when partially deployed on a NVIDIA Jetson TX2.

16

4.1 Future Work
Our parallelization experiment shows that the latency caused by the internet con-
nection is of significant impact on our proposed pipeline. In some applications
this latency might not be acceptable. In other applications, for example when the
edge device is deployed in remote locations with slow internet connectivity, the
latency could be even larger than described in our experiment. The latency could
be reduced significantly by splitting the DETR architecture using our paralleliza-
tion methodology on two edge devices directly, instead of on an edge device and
a workstation computer. The results of our parallelization experiment show that
such a split could drastically decrease the inference speed of DETR on multiple
edge devices compared to performing inference on a single device.

For futher optimization the DETR architecture for (partial) deployment on edge
devices, the complexity of the Transformer of the DETR model could be optimized
as well. For optimal perfomance in AP, the Transformer in DETR uses 12 encoder
and 12 decoder layers. Carion et al. [1] show that reducing the number of encoder
layers from 12 to 6, increases the FPS of DETR by 15%, while decreasing the AP
of DETR by 2.4%. Potentially, performing knowledge distillation on the DETR
Transformer, similarly to our proposed method of knowledge distillation of the
DETR backbone, could improve the AP of DETR with less Transformer encoder
layers.

4.2 Conclusion
Through our distillation experiment we have demonstrated the feasibility of per-
forming knowledge distillation of the backbone of the DETR architecture from
ResNet50 to ResNet34. We have also shown that replacing the ResNet50 backbone
with a ResNet34 backbone decreases the inference time of the DETR architecture
on an edge device by 42.8%. Our model splitting methodology and paralleliza-
tion experiment strongly indicate great potential of inference speedups through
parallelization of DETR across multiple devices.

17

References

[1] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko,
“End-to-end object detection with transformers,” 2020.

[2] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays, P. Perona,
D. Ramanan, C. L. Zitnick, and P. Dollár, “Microsoft coco: Common objects
in context,” 2015.

[3] S. Bianco, R. Cadene, L. Celona, and P. Napoletano, “Benchmark analysis
of representative deep neural network architectures,” IEEE Access, vol. 6,
p. 64270–64277, 2018.

[4] G. Plastiras, C. Kyrkou, and T. Theocharides, “Edgenet,” Proceedings of the
13th International Conference on Distributed Smart Cameras, Sep 2019.

[5] S. Tuli, N. Basumatary, and R. Buyya, “Edgelens: Deep learning based object
detection in integrated iot, fog and cloud computing environments,” 2019.

[6] J. Ren, Y. Guo, D. Zhang, Q. Liu, and Y. Zhang, “Distributed and efficient ob-
ject detection in edge computing: Challenges and solutions,” IEEE Network,
vol. 32, no. 6, pp. 137–143, 2018.

[7] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” 2015.

[8] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” 2017.

[9] Y. LeCun, P. Haffner, L. Bottou, and Y. Bengio, “Object recognition with
gradient-based learning,” Springer-Verlag, 1999.

[10] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly
learning to align and translate,” 2016.

[11] M.-T. Luong, H. Pham, and C. D. Manning, “Effective approaches to
attention-based neural machine translation,” 2015.

18

[12] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Com-
put., vol. 9, p. 1735–1780, Nov. 1997.

[13] H. Rezatofighi, N. Tsoi, J. Gwak, A. Sadeghian, I. Reid, and S. Savarese,
“Generalized intersection over union: A metric and a loss for bounding box
regression,” 2019.

[14] N. C. Thompson, K. Greenewald, K. Lee, and G. F. Manso, “The computa-
tional limits of deep learning,” 2020.

[15] J. Gou, B. Yu, S. J. Maybank, and D. Tao, “Knowledge distillation: A survey,”
International Journal of Computer Vision, vol. 129, p. 1789–1819, Mar 2021.

[16] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” 2015.

[17] M. Gao, Y. Shen, Q. Li, J. Yan, L. Wan, D. Lin, C. C. Loy, and X. Tang, “An
embarrassingly simple approach for knowledge distillation,” 2019.

[18] NVIDIA, “Tensorrt.” https://github.com/NVIDIA/TensorRT, 2021.

[19] Microsoft, “Open neural network exchange.” https://github.com/onnx/onnx,
2021.

[20] “Mpi: A message-passing interface standard,” tech. rep., USA, 1994.

19

